Last updated: 2025-02-04

Checks: 6 1

Knit directory: paed-airway-allTissues/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230811) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 54e4ec2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    data/RDS/
    Ignored:    output/.DS_Store
    Ignored:    output/CSV/.DS_Store
    Ignored:    output/G000231_Neeland_batch1/
    Ignored:    output/G000231_Neeland_batch2_1/
    Ignored:    output/G000231_Neeland_batch2_2/
    Ignored:    output/G000231_Neeland_batch3/
    Ignored:    output/G000231_Neeland_batch4/
    Ignored:    output/G000231_Neeland_batch5/
    Ignored:    output/G000231_Neeland_batch9_1/
    Ignored:    output/RDS/
    Ignored:    output/plots/

Untracked files:
    Untracked:  analysis/03_Batch_Integration.Rmd
    Untracked:  analysis/Age_proportions.Rmd
    Untracked:  analysis/Age_proportions_AllBatches.Rmd
    Untracked:  analysis/All_Batches_QCExploratory_v2.Rmd
    Untracked:  analysis/All_metadata.Rmd
    Untracked:  analysis/Annotation_BAL.Rmd
    Untracked:  analysis/Annotation_Bronchial_brushings.Rmd
    Untracked:  analysis/Annotation_Nasal_brushings.Rmd
    Untracked:  analysis/BatchCorrection_Adenoids.Rmd
    Untracked:  analysis/BatchCorrection_Nasal_brushings.Rmd
    Untracked:  analysis/BatchCorrection_Tonsils.Rmd
    Untracked:  analysis/Batch_Integration_&_Downstream_analysis.Rmd
    Untracked:  analysis/Batch_correction_&_Downstream.Rmd
    Untracked:  analysis/Cell_cycle_regression.Rmd
    Untracked:  analysis/Clustering_Tonsils_v2.Rmd
    Untracked:  analysis/DGE_analysis_George.Rmd
    Untracked:  analysis/Master_metadata.Rmd
    Untracked:  analysis/Pediatric_Vs_Adult_Atlases.Rmd
    Untracked:  analysis/Preprocessing_Batch1_Nasal_brushings.Rmd
    Untracked:  analysis/Preprocessing_Batch2_Tonsils.Rmd
    Untracked:  analysis/Preprocessing_Batch3_Adenoids.Rmd
    Untracked:  analysis/Preprocessing_Batch4_Bronchial_brushings.Rmd
    Untracked:  analysis/Preprocessing_Batch5_Nasal_brushings.Rmd
    Untracked:  analysis/Preprocessing_Batch6_BAL.Rmd
    Untracked:  analysis/Preprocessing_Batch7_Bronchial_brushings.Rmd
    Untracked:  analysis/Preprocessing_Batch8_Adenoids.Rmd
    Untracked:  analysis/Preprocessing_Batch9_Tonsils.Rmd
    Untracked:  analysis/TonsilsVsAdenoids.Rmd
    Untracked:  analysis/cell_cycle_regression.R
    Untracked:  analysis/testing_age_all.Rmd
    Untracked:  data/Cell_labels_Gunjan_v2/
    Untracked:  data/Cell_labels_Mel/
    Untracked:  data/Cell_labels_Mel_v2/
    Untracked:  data/Cell_labels_Mel_v3/
    Untracked:  data/Cell_labels_modified_Gunjan/
    Untracked:  data/Gene_sets/
    Untracked:  data/Hs.c2.cp.reactome.v7.1.entrez.rds
    Untracked:  data/Raw_feature_bc_matrix/
    Untracked:  data/cell_labels_Mel_v4_Dec2024/
    Untracked:  data/celltypes_Mel_GD_v3.xlsx
    Untracked:  data/celltypes_Mel_GD_v4_no_dups.xlsx
    Untracked:  data/celltypes_Mel_modified.xlsx
    Untracked:  data/celltypes_Mel_v2.csv
    Untracked:  data/celltypes_Mel_v2.xlsx
    Untracked:  data/celltypes_Mel_v2_MN.xlsx
    Untracked:  data/celltypes_for_mel_MN.xlsx
    Untracked:  data/col_palette.xlsx
    Untracked:  data/earlyAIR_sample_sheets_combined.xlsx
    Untracked:  data/~$col_palette.xlsx
    Untracked:  output/CSV/All_tissues.propeller.xlsx
    Untracked:  output/CSV/Bronchial_brushings/
    Untracked:  output/CSV/Bronchial_brushings_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/
    Untracked:  output/CSV/G000231_Neeland_Adenoids.propeller.xlsx
    Untracked:  output/CSV/G000231_Neeland_Bronchial_brushings.propeller.xlsx
    Untracked:  output/CSV/G000231_Neeland_Nasal_brushings.propeller.xlsx
    Untracked:  output/CSV/G000231_Neeland_Tonsils.propeller.xlsx
    Untracked:  output/CSV/Nasal_brushings/
    Untracked:  output/CSV_v2/G000231_Neeland_Adenoids.propeller.xlsx
    Untracked:  output/CSV_v2/G000231_Neeland_Nasal_brushings.propeller.xlsx
    Untracked:  output/CSV_v2/G000231_Neeland_Tonsils.propeller.xlsx
    Untracked:  output/DGE/
    Untracked:  test_col.csv
    Untracked:  test_col.txt
    Untracked:  test_col.xlsx

Unstaged changes:
    Deleted:    02_QC_exploratoryPlots.Rmd
    Deleted:    02_QC_exploratoryPlots.html
    Modified:   analysis/00_AllBatches_overview.Rmd
    Modified:   analysis/01_QC_emptyDrops.Rmd
    Modified:   analysis/02_QC_exploratoryPlots.Rmd
    Modified:   analysis/Adenoids.Rmd
    Modified:   analysis/Adenoids_v2.Rmd
    Modified:   analysis/Age_modeling.Rmd
    Modified:   analysis/Age_modelling_Adenoids.Rmd
    Modified:   analysis/Age_modelling_Nasal_Brushings.Rmd
    Modified:   analysis/Age_modelling_Tonsils.Rmd
    Modified:   analysis/AllBatches_QCExploratory.Rmd
    Modified:   analysis/BAL.Rmd
    Modified:   analysis/BAL_v2.Rmd
    Modified:   analysis/Bronchial_brushings.Rmd
    Modified:   analysis/Bronchial_brushings_v2.Rmd
    Modified:   analysis/Nasal_brushings.Rmd
    Modified:   analysis/Nasal_brushings_v2.Rmd
    Modified:   analysis/Subclustering_Adenoids.Rmd
    Modified:   analysis/Subclustering_BAL.Rmd
    Modified:   analysis/Subclustering_Bronchial_brushings.Rmd
    Modified:   analysis/Subclustering_Nasal_brushings.Rmd
    Modified:   analysis/Subclustering_Tonsils.Rmd
    Modified:   analysis/Tonsils.Rmd
    Modified:   analysis/Tonsils_v2.Rmd
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c0.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c1.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c10.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c11.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c12.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c13.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c14.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c15.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c16.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c17.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c2.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c3.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c4.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c5.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c6.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c7.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c8.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c9.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c0.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c1.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c10.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c11.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c12.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c13.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c14.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c15.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c16.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c17.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c2.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c3.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c4.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c5.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c6.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c7.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c8.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c9.csv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Age_modelling_Adenoids.Rmd) and HTML (docs/Age_modelling_Adenoids.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 8f254aa Gunjan Dixit 2024-10-09 Modified age analysis with interaction model
html 8f254aa Gunjan Dixit 2024-10-09 Modified age analysis with interaction model
html 0f07f72 Gunjan Dixit 2024-10-07 Added BAL subclustering without DecontX

Introduction

This RMarkdown performs age modelling analysis for the earlyAIR tissue- Adenoids

suppressPackageStartupMessages({
  library(here)
  library(glue)
  library(patchwork)
  library(Seurat)
  library(dplyr)
  library(tidyverse)
  library(gridExtra)
  library(paletteer)
  library(viridis)
  library(ggforce)
  library(RColorBrewer)
  library(scran)
  library(ggridges)
  library(speckle)
  library(edgeR)
  library(kableExtra)
  library(dplyr)
  library(limma)
  library(knitr)
  library(openxlsx)
})

Load data

tissue <- "Adenoids"
out <- here("output/RDS/AllBatches_Annotation_SEUs_v2/G000231_Neeland_Adenoids.annotated_clusters.SEU.rds")
merged_obj <- readRDS(out)
merged_obj
An object of class Seurat 
17456 features across 184005 samples within 1 assay 
Active assay: RNA (17456 features, 2000 variable features)
 10 layers present: data.1, data.2, data.3, counts.1, scale.data.1, counts.2, scale.data.2, counts.3, scale.data.3, scale.data
 2 dimensional reductions calculated: pca, umap.merged

Plot sample wise cell-type proportions

metadata_df <- data.frame(
  sample = merged_obj$sample_id, 
  donor = merged_obj$donor_id,
  age_years = as.character(merged_obj$age_years),  
  cell_type = Idents(merged_obj)
)

color_palette = readRDS(here("output/RDS/color_palette_unique.rds"))

metadata_df$age_years <- as.numeric(metadata_df$age_years)

barplot_data <- metadata_df %>%
  group_by(donor, age_years, cell_type) %>%
  summarise(n_cells = n()) %>%
  ungroup() %>%
  group_by(donor, age_years) %>%
  mutate(n_cells_total = sum(n_cells)) %>%
  ungroup() %>%
  mutate(percentage_cells = n_cells / n_cells_total)
`summarise()` has grouped output by 'donor', 'age_years'. You can override
using the `.groups` argument.
barplot_data <- barplot_data %>%
  arrange(age_years)

a <- ggplot(barplot_data, aes(x = reorder(paste(donor, age_years, sep = ":"), age_years),
                         y = percentage_cells, fill = cell_type)) +
  geom_bar(stat = "identity") +
  ggtitle(paste0("Age vs Cell Type Proportions: ", tissue)) +
  labs(x = "Sample:Age (Years)", y = "Proportion", fill = "Cell Type") +
  scale_fill_manual(values = color_palette) +
  theme_minimal() +
  theme(
    plot.title = element_text(size = 13, hjust = 0.5, face = "bold"),
    legend.position = "top",
    axis.text.x = element_text(angle = 45, hjust = 1)
  )
a

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

Calculate proportions using Propeller

props <- getTransformedProps(clusters = merged_obj$cell_labels_v2,
                               sample = merged_obj$sample_id, transform = "asin")
Performing arcsin square root transformation of proportions
cat('### ', tissue, '\n')
###  Adenoids 
# Plot Cell Type Mean Variance
p1 <- plotCellTypeMeanVar(props$Counts)
Using classic mode.

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07
# Plot Cell Type Proportions Mean Variance
p2 <- plotCellTypePropsMeanVar(props$Counts)

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07
p1 / p2
numeric(0)
print(knitr::kable(props$Proportions, caption = "Cell-type proportions in samples"))


Table: Cell-type proportions in samples

|                                 |      s042|      s043|      s044|      s045|      s046|      s047|      s048|      s049|      s050|      s051|      s052|      s053|      s054|      s055|      s056|      s057|      s122|      s123|      s124|      s125|      s126|      s127|      s128|      s129|      s130|      s131|      s132|      s133|      s134|      s135|      s136|      s137|
|:--------------------------------|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|
|B cells                          | 0.0012565| 0.0011970| 0.0036579| 0.0011142| 0.0003168| 0.0016077| 0.0007910| 0.0013493| 0.0011455| 0.0021042| 0.0006300| 0.0006954| 0.0030349| 0.0008116| 0.0006959| 0.0001979| 0.0057615| 0.0023669| 0.0005106| 0.0012739| 0.0027930| 0.0234757| 0.0253067| 0.0010433| 0.0013317| 0.0010542| 0.0021198| 0.0022664| 0.0010437| 0.0016762| 0.0010556| 0.0004396|
|CD4 T proliferating              | 0.0041885| 0.0083792| 0.0104108| 0.0037140| 0.0060184| 0.0036748| 0.0158197| 0.0026985| 0.0057274| 0.0097317| 0.0066152| 0.0052156| 0.0037353| 0.0045447| 0.0039434| 0.0045527| 0.0059535| 0.0029586| 0.0097005| 0.0117834| 0.0081796| 0.0088034| 0.0076687| 0.0073031| 0.0042373| 0.0124394| 0.0044628| 0.0039033| 0.0037274| 0.0041905| 0.0042226| 0.0017582|
|CD4 TCM                          | 0.0069110| 0.0229830| 0.0261677| 0.0155989| 0.0136205| 0.0128617| 0.0096895| 0.0057826| 0.0118366| 0.0136770| 0.0094503| 0.0206885| 0.0094549| 0.0120110| 0.0206449| 0.0178147| 0.0092184| 0.0236686| 0.0154867| 0.0187898| 0.0101746| 0.0208673| 0.0734663| 0.0425143| 0.0077482| 0.0409024| 0.0194131| 0.0177537| 0.0216192| 0.0268194| 0.0269944| 0.0114286|
|CD4 TFH                          | 0.0462827| 0.0811587| 0.0658413| 0.0560817| 0.0650934| 0.0661461| 0.0711885| 0.0574402| 0.0446735| 0.0699632| 0.0571744| 0.0827538| 0.0582468| 0.0581075| 0.0347947| 0.0506730| 0.0359132| 0.0295858| 0.0689244| 0.1019108| 0.0817955| 0.0352136| 0.0029141| 0.0555556| 0.0364407| 0.0453300| 0.0440701| 0.0600604| 0.0247503| 0.0635564| 0.0438848| 0.0665201|
|CD4 TN                           | 0.0452356| 0.0237012| 0.0697805| 0.0250696| 0.0489389| 0.0445567| 0.0464702| 0.0246723| 0.0347461| 0.0352446| 0.0480391| 0.0335535| 0.0189098| 0.0495050| 0.0331710| 0.0496833| 0.0453236| 0.0463511| 0.0382914| 0.0560510| 0.0539651| 0.0143463| 0.0426380| 0.1051122| 0.0244552| 0.0923466| 0.0539998| 0.0256862| 0.0262412| 0.0486101| 0.0396622| 0.0058608|
|CD4 Treg-eff                     | 0.0150785| 0.0304046| 0.0450197| 0.0256267| 0.0199557| 0.0337621| 0.0322325| 0.0264071| 0.0271096| 0.0210416| 0.0133879| 0.0429416| 0.0217112| 0.0271060| 0.0350267| 0.0364212| 0.0326484| 0.0422091| 0.0163376| 0.0350318| 0.0167581| 0.0286925| 0.0165644| 0.0219092| 0.0208232| 0.0274088| 0.0452973| 0.0248048| 0.0237066| 0.0324068| 0.0278993| 0.0313553|
|CD8 TF                           | 0.0119372| 0.0114915| 0.0140687| 0.0144847| 0.0155211| 0.0176849| 0.0102828| 0.0100231| 0.0370370| 0.0107838| 0.0239408| 0.0368567| 0.0330337| 0.0193150| 0.0213408| 0.0401821| 0.0334166| 0.0435897| 0.0161675| 0.0178344| 0.0114713| 0.0169547| 0.0742331| 0.0255608| 0.0368039| 0.0455408| 0.0263305| 0.0345001| 0.0380200| 0.0192764| 0.0203589| 0.0225641|
|CD8 TN                           | 0.0165445| 0.0313622| 0.0264491| 0.0094708| 0.0318340| 0.0436380| 0.0217520| 0.0306476| 0.0215731| 0.0144661| 0.0096078| 0.0175591| 0.0096883| 0.0124980| 0.0132220| 0.0237530| 0.0280392| 0.0185404| 0.0457794| 0.0347134| 0.0172569| 0.0114118| 0.0595092| 0.0341680| 0.0319613| 0.0638836| 0.0103760| 0.0188869| 0.0184881| 0.0131303| 0.0149299| 0.0033700|
|csMBC FCRL4/5+                   | 0.0069110| 0.0110127| 0.0053461| 0.0042711| 0.0114032| 0.0043638| 0.0085031| 0.0042406| 0.0064910| 0.0055234| 0.0058277| 0.0057371| 0.0067702| 0.0040578| 0.0034795| 0.0029691| 0.0057615| 0.0017751| 0.0062968| 0.0095541| 0.0077805| 0.0068471| 0.0026074| 0.0046948| 0.0032688| 0.0075901| 0.0035702| 0.0050365| 0.0028329| 0.0034921| 0.0025637| 0.0013187|
|Cycling GCB                      | 0.0171728| 0.0126885| 0.0070343| 0.0168988| 0.0288248| 0.0082683| 0.0251137| 0.0227448| 0.0160367| 0.0160442| 0.0143330| 0.0182545| 0.0204272| 0.0245090| 0.0150777| 0.0039588| 0.0071058| 0.0067061| 0.0153165| 0.0343949| 0.0179551| 0.1565047| 0.0173313| 0.0039124| 0.0188862| 0.0080118| 0.0022314| 0.0081843| 0.0047711| 0.0124319| 0.0081436| 0.0099634|
|Double negative T                | 0.0027225| 0.0055063| 0.0045020| 0.0027855| 0.0041178| 0.0103353| 0.0031639| 0.0050116| 0.0055365| 0.0052604| 0.0015751| 0.0020862| 0.0038520| 0.0030839| 0.0025516| 0.0049485| 0.0026887| 0.0098619| 0.0032335| 0.0044586| 0.0066833| 0.0074992| 0.0027607| 0.0057381| 0.0021792| 0.0029517| 0.0045744| 0.0052883| 0.0025347| 0.0061461| 0.0015081| 0.0008791|
|DZ early  Sphase                 | 0.0307853| 0.0217860| 0.0239167| 0.0209842| 0.0476718| 0.0199816| 0.0353965| 0.0210100| 0.0269187| 0.0294582| 0.0300835| 0.0194715| 0.0317497| 0.0415517| 0.0141498| 0.0027712| 0.0082581| 0.0142012| 0.0294418| 0.0324841| 0.0296259| 0.0769482| 0.0073620| 0.0130412| 0.0426150| 0.0050601| 0.0153966| 0.0211534| 0.0165499| 0.0308702| 0.0158347| 0.0124542|
|DZ G2Mphase                      | 0.0272251| 0.0189131| 0.0230726| 0.0172702| 0.0465632| 0.0231971| 0.0276844| 0.0269854| 0.0236732| 0.0265650| 0.0250433| 0.0309458| 0.0284814| 0.0383055| 0.0157736| 0.0023753| 0.0105627| 0.0138067| 0.0214432| 0.0280255| 0.0251372| 0.0205412| 0.0041411| 0.0106938| 0.0376513| 0.0046384| 0.0146156| 0.0176278| 0.0150589| 0.0284956| 0.0131202| 0.0161172|
|DZ GCB                           | 0.0387435| 0.0179555| 0.0222285| 0.0276695| 0.0422870| 0.0293983| 0.0294641| 0.0304549| 0.0343643| 0.0355076| 0.0291384| 0.0279903| 0.0424886| 0.0592436| 0.0336349| 0.0065321| 0.0190129| 0.0179487| 0.0234854| 0.0292994| 0.0334165| 0.0313009| 0.0085890| 0.0135629| 0.0386199| 0.0061143| 0.0160660| 0.0239234| 0.0229611| 0.0287750| 0.0147791| 0.0279853|
|DZ GCB Noproli-memory like       | 0.0039791| 0.0028729| 0.0056275| 0.0070566| 0.0014254| 0.0018374| 0.0120625| 0.0034695| 0.0024819| 0.0044713| 0.0020476| 0.0060848| 0.0024513| 0.0284045| 0.0044073| 0.0015835| 0.0007682| 0.0003945| 0.0018720| 0.0015924| 0.0029925| 0.0078252| 0.0009202| 0.0023474| 0.0018160| 0.0010542| 0.0016735| 0.0017628| 0.0014910| 0.0037715| 0.0015081| 0.0030769|
|DZ late Sphase                   | 0.0360209| 0.0241800| 0.0306697| 0.0219127| 0.0503643| 0.0213597| 0.0419221| 0.0319969| 0.0274914| 0.0420831| 0.0315010| 0.0265994| 0.0330337| 0.0409025| 0.0178613| 0.0033650| 0.0149798| 0.0147929| 0.0386317| 0.0401274| 0.0324190| 0.0104336| 0.0029141| 0.0179969| 0.0422518| 0.0046384| 0.0159545| 0.0175019| 0.0187863| 0.0270988| 0.0158347| 0.0153846|
|DZtoLZ GCB transition            | 0.0420942| 0.0217860| 0.0453011| 0.0521820| 0.0521064| 0.0627010| 0.0383627| 0.0695837| 0.0412371| 0.0570752| 0.0548118| 0.0584145| 0.0595308| 0.0545366| 0.0510322| 0.0077197| 0.0366814| 0.0487179| 0.0490129| 0.0579618| 0.0526683| 0.0661885| 0.0377301| 0.0469484| 0.0986683| 0.0143369| 0.0355908| 0.0756736| 0.0366781| 0.0628579| 0.0357412| 0.0742857|
|Early GC-committed NBC           | 0.0188482| 0.0081398| 0.0112549| 0.0183844| 0.0193221| 0.0117134| 0.0166106| 0.0194680| 0.0129821| 0.0163072| 0.0166955| 0.0241655| 0.0261468| 0.0228859| 0.0118302| 0.0043547| 0.0080661| 0.0104536| 0.0134445| 0.0181529| 0.0193516| 0.0159765| 0.0036810| 0.0146062| 0.0175545| 0.0042167| 0.0120495| 0.0176278| 0.0125242| 0.0181590| 0.0165887| 0.0147985|
|Early MBC                        | 0.0456545| 0.0162796| 0.0295442| 0.0228412| 0.0364270| 0.0229674| 0.0458770| 0.0138782| 0.0316915| 0.0249868| 0.0203182| 0.0292072| 0.1040037| 0.0506411| 0.0308513| 0.0057403| 0.0078740| 0.0102564| 0.0194010| 0.0318471| 0.0282294| 0.0120639| 0.0004601| 0.0143453| 0.0253027| 0.0046384| 0.0080330| 0.0227902| 0.0126733| 0.0222098| 0.0054290| 0.0441026|
|Early PC precursor               | 0.0039791| 0.0023941| 0.0033765| 0.0020427| 0.0047513| 0.0036748| 0.0031639| 0.0048188| 0.0015273| 0.0036823| 0.0045676| 0.0052156| 0.0107389| 0.0030839| 0.0023196| 0.0001979| 0.0007682| 0.0011834| 0.0023826| 0.0028662| 0.0061845| 0.0042387| 0.0015337| 0.0036515| 0.0042373| 0.0006325| 0.0021198| 0.0036515| 0.0029820| 0.0032127| 0.0067863| 0.0026374|
|Epithelial cells                 | 0.0018848| 0.0026335| 0.0014069| 0.0020427| 0.0006335| 0.0006890| 0.0017797| 0.0021203| 0.0003818| 0.0007891| 0.0011025| 0.0029555| 0.0072371| 0.0025970| 0.0062630| 0.0015835| 0.0009602| 0.0021696| 0.0015317| 0.0060510| 0.0007980| 0.0045647| 0.0029141| 0.0005216| 0.0009685| 0.0010542| 0.0011157| 0.0012591| 0.0025347| 0.0022349| 0.0031669| 0.0011722|
|Follicular dendritic cells       | 0.0052356| 0.0038305| 0.0123804| 0.0053853| 0.0120367| 0.0022967| 0.0073166| 0.0057826| 0.0061092| 0.0065755| 0.0039376| 0.0073018| 0.0100385| 0.0094141| 0.0041754| 0.0023753| 0.0003841| 0.0027613| 0.0054459| 0.0047771| 0.0032918| 0.0146723| 0.0016871| 0.0052165| 0.0081114| 0.0025300| 0.0027892| 0.0076807| 0.0087968| 0.0132700| 0.0043734| 0.0055678|
|GC-commited metabolic activation | 0.0157068| 0.0148432| 0.0067530| 0.0176416| 0.0361102| 0.0057418| 0.0142377| 0.0121434| 0.0116457| 0.0160442| 0.0141755| 0.0053894| 0.0173923| 0.0154196| 0.0062630| 0.0013856| 0.0036489| 0.0027613| 0.0073179| 0.0066879| 0.0092768| 0.0293446| 0.0027607| 0.0070423| 0.0153753| 0.0042167| 0.0062479| 0.0094435| 0.0026838| 0.0107557| 0.0069371| 0.0016117|
|Mast cells                       | 0.0004188| 0.0016758| 0.0000000| 0.0001857| 0.0001584| 0.0004593| 0.0009887| 0.0003855| 0.0005727| 0.0005260| 0.0007875| 0.0010431| 0.0011673| 0.0004869| 0.0009279| 0.0005938| 0.0001920| 0.0005917| 0.0008509| 0.0019108| 0.0009975| 0.0035866| 0.0015337| 0.0010433| 0.0008475| 0.0000000| 0.0004463| 0.0007555| 0.0020874| 0.0004191| 0.0001508| 0.0016117|
|Memory B cells                   | 0.0718325| 0.1288006| 0.1623523| 0.2102136| 0.0657270| 0.1740928| 0.0943247| 0.1303007| 0.2185949| 0.1743819| 0.1263191| 0.1470793| 0.1028365| 0.1212466| 0.2261656| 0.1983373| 0.1319378| 0.2333333| 0.0713070| 0.0891720| 0.0792020| 0.0808608| 0.0673313| 0.1851852| 0.0880145| 0.1884883| 0.2571684| 0.1884916| 0.1756374| 0.2120408| 0.1034535| 0.2411722|
|Monocytes/macrophages            | 0.0115183| 0.0189131| 0.0101294| 0.0120706| 0.0175800| 0.0098760| 0.0174016| 0.0080956| 0.0158457| 0.0115729| 0.0077178| 0.0116481| 0.0148243| 0.0089271| 0.0192531| 0.0124703| 0.0136355| 0.0136095| 0.0124234| 0.0133758| 0.0097756| 0.0283665| 0.0352761| 0.0125196| 0.0142857| 0.0141261| 0.0066942| 0.0107026| 0.0156553| 0.0106160| 0.0119137| 0.0115751|
|Naïve B cell-IFN                 | 0.0730890| 0.0299258| 0.0205402| 0.0189415| 0.0476718| 0.0473128| 0.0377694| 0.0516577| 0.0173730| 0.0136770| 0.0444164| 0.0027816| 0.0295319| 0.0063301| 0.0584551| 0.0071259| 0.1697715| 0.0025641| 0.0435671| 0.0321656| 0.0403990| 0.0061950| 0.1851227| 0.0028691| 0.1301453| 0.0016867| 0.0080330| 0.0045329| 0.0708215| 0.0026540| 0.0039210| 0.0030769|
|Naïve B cells                    | 0.2998953| 0.3155375| 0.1226787| 0.2909935| 0.2035160| 0.1926964| 0.2467866| 0.2812259| 0.2002673| 0.2293530| 0.3213104| 0.1898470| 0.1799930| 0.2134394| 0.2032011| 0.3452098| 0.1430766| 0.1964497| 0.3286249| 0.1703822| 0.2726185| 0.0854255| 0.1452454| 0.2670840| 0.1127119| 0.3116171| 0.1750530| 0.2618988| 0.3293574| 0.1395446| 0.4676519| 0.2150916|
|Neutrophils                      | 0.0004188| 0.0000000| 0.0000000| 0.0001857| 0.0001584| 0.0000000| 0.0007910| 0.0011565| 0.0000000| 0.0015781| 0.0006300| 0.0081711| 0.0008171| 0.0006492| 0.0009279| 0.0243468| 0.0005761| 0.0000000| 0.0003404| 0.0006369| 0.0001995| 0.0009782| 0.0004601| 0.0028691| 0.0001211| 0.0000000| 0.0000000| 0.0001259| 0.0000000| 0.0002794| 0.0085960| 0.0002930|
|NK-T cells                       | 0.0058639| 0.0035911| 0.0160383| 0.0022284| 0.0006335| 0.0039045| 0.0017797| 0.0015420| 0.0009546| 0.0023672| 0.0001575| 0.0008693| 0.0030349| 0.0017854| 0.0048713| 0.0013856| 0.0028807| 0.0017751| 0.0020422| 0.0015924| 0.0001995| 0.0026084| 0.0021472| 0.0010433| 0.0009685| 0.0023192| 0.0092603| 0.0028960| 0.0022365| 0.0051683| 0.0015081| 0.0021978|
|NK/gamma-delta T                 | 0.0071204| 0.0129279| 0.0143500| 0.0055710| 0.0033259| 0.0096463| 0.0059324| 0.0046261| 0.0053456| 0.0052604| 0.0044101| 0.0109527| 0.0073538| 0.0045447| 0.0139179| 0.0116785| 0.0076820| 0.0092702| 0.0146358| 0.0060510| 0.0025935| 0.0107597| 0.0173313| 0.0086072| 0.0047215| 0.0109635| 0.0152851| 0.0089398| 0.0093932| 0.0097779| 0.0054290| 0.0067399|
|Plasma B cells                   | 0.0332984| 0.0225042| 0.0182893| 0.0323120| 0.0259740| 0.0280202| 0.0203678| 0.0368157| 0.0211913| 0.0265650| 0.0274059| 0.0265994| 0.0283647| 0.0207758| 0.0215727| 0.0389945| 0.0243902| 0.0234714| 0.0211028| 0.0238854| 0.0243392| 0.0639061| 0.0134969| 0.0232134| 0.0277240| 0.0109635| 0.0309048| 0.0221607| 0.0310124| 0.0155050| 0.0475041| 0.0347253|
|Plasmacytoid DCs                 | 0.0027225| 0.0203495| 0.0157569| 0.0051996| 0.0063351| 0.0089573| 0.0041527| 0.0042406| 0.0061092| 0.0031562| 0.0066152| 0.0067803| 0.0107389| 0.0050317| 0.0099745| 0.0241489| 0.0078740| 0.0122288| 0.0115725| 0.0076433| 0.0025935| 0.0143463| 0.0113497| 0.0088680| 0.0049637| 0.0090660| 0.0120495| 0.0114581| 0.0043238| 0.0092192| 0.0031669| 0.0013187|
|Pre-BCRi II                      | 0.0048168| 0.0043093| 0.0011255| 0.0035283| 0.0077605| 0.0025264| 0.0045482| 0.0044333| 0.0042001| 0.0028932| 0.0070877| 0.0053894| 0.0057196| 0.0048693| 0.0074229| 0.0047506| 0.0036489| 0.0017751| 0.0020422| 0.0057325| 0.0060848| 0.0039126| 0.0009202| 0.0028691| 0.0012107| 0.0054818| 0.0013388| 0.0018887| 0.0020874| 0.0016762| 0.0003016| 0.0082051|
|Pre-T cells                      | 0.0140314| 0.0004788| 0.0008441| 0.0024141| 0.0006335| 0.0039045| 0.0126557| 0.0019275| 0.0309278| 0.0034193| 0.0000000| 0.0000000| 0.0058363| 0.0021100| 0.0000000| 0.0003959| 0.0000000| 0.0000000| 0.0015317| 0.0047771| 0.0364090| 0.0000000| 0.0001534| 0.0000000| 0.0039952| 0.0000000| 0.0000000| 0.0001259| 0.0000000| 0.0000000| 0.0000000| 0.0000000|
|T-IFN                            | 0.0178010| 0.0057458| 0.0087226| 0.0027855| 0.0079189| 0.0066605| 0.0057346| 0.0121434| 0.0013364| 0.0044713| 0.0070877| 0.0027816| 0.0126065| 0.0022724| 0.0074229| 0.0023753| 0.1229115| 0.0019724| 0.0124234| 0.0117834| 0.0133666| 0.0013042| 0.1042945| 0.0028691| 0.0602906| 0.0021084| 0.0040165| 0.0012591| 0.0113314| 0.0015365| 0.0009048| 0.0005861|
|TFH-LZ-GC                        | 0.0127749| 0.0397414| 0.1153630| 0.0228412| 0.0172632| 0.0594855| 0.0278821| 0.0287201| 0.0448645| 0.0533930| 0.0220507| 0.0759736| 0.0350181| 0.0249959| 0.0433774| 0.0530483| 0.0476282| 0.1358974| 0.0280803| 0.0452229| 0.0330175| 0.0730355| 0.0156442| 0.0234742| 0.0286925| 0.0425891| 0.1316523| 0.0582977| 0.0246012| 0.1081157| 0.0141758| 0.0987546|

Set model and design matrix

merged_obj@meta.data <- merged_obj@meta.data %>%
  mutate(age_group = case_when(
    age_years >= 1 & age_years < 6  ~ "Preschool_1to5_years",
    age_years >= 6 & age_years < 12 ~ "Kids_6to11_years",
    age_years >= 12 ~ "Adolescent_12to17_years",
    TRUE ~ "Other"))
samples_metadata <- merged_obj@meta.data %>%
  dplyr::filter(sample_id %in% unique(merged_obj@meta.data$sample_id)) %>%
  dplyr::group_by(sample_id) %>%
  dplyr::summarise(
    age = dplyr::first(age_years),
    sex = dplyr::first(sex),
    batch = dplyr::first(batch_name),
    age_group = dplyr::first(age_group),
    .groups = 'drop'  
  )
  
age <- samples_metadata$age
sex <- as.factor(samples_metadata$sex)
batch <- as.factor(samples_metadata$batch)
design <- model.matrix(~age + sex + batch)
design
   (Intercept)   age sexM batchG000231_batch8
1            1  3.62    1                   0
2            1  3.29    0                   0
3            1  6.79    0                   0
4            1  5.82    0                   0
5            1  1.64    1                   0
6            1  3.73    1                   0
7            1  2.31    1                   0
8            1  3.82    1                   0
9            1  6.67    0                   0
10           1  2.73    1                   0
11           1  5.02    0                   0
12           1  3.93    1                   0
13           1  3.76    1                   0
14           1  4.45    1                   0
15           1  5.28    0                   0
16           1 11.27    0                   0
17           1  8.90    1                   1
18           1 15.19    1                   1
19           1  2.41    1                   1
20           1  1.58    0                   1
21           1  2.86    0                   1
22           1  8.01    1                   1
23           1 11.16    1                   1
24           1  7.34    0                   1
25           1  6.42    1                   1
26           1 11.57    1                   1
27           1 10.54    0                   1
28           1 11.23    1                   1
29           1 12.75    1                   1
30           1  7.77    0                   1
31           1 13.22    0                   1
32           1 12.21    0                   1
attr(,"assign")
[1] 0 1 2 3
attr(,"contrasts")
attr(,"contrasts")$sex
[1] "contr.treatment"

attr(,"contrasts")$batch
[1] "contr.treatment"

Linear model fitting with Limma

fit <- lmFit(props$TransformedProps, design)
fit <- eBayes(fit, robust=TRUE)
coef = "age"
toptable.transformedProps <- topTable(fit, coef = coef) 
  
fit.prop <- lmFit(props$Proportions, design)
fit.prop <- eBayes(fit.prop, robust=TRUE)
toptable.props <- topTable(fit.prop, sort.by = "p", coef = 2)
  
cat(paste('### ', tissue, '\n', sep = ""))
### Adenoids
print(knitr::kable(toptable.transformedProps, caption = paste0("Transformed proportions Toptable results: ", tissue)))


Table: Transformed proportions Toptable results: Adenoids

|                                 |      logFC|   AveExpr|         t|   P.Value| adj.P.Val|         B|
|:--------------------------------|----------:|---------:|---------:|---------:|---------:|---------:|
|DZ late Sphase                   | -0.0091283| 0.1540219| -5.604706| 0.0000039| 0.0001445|  2.372546|
|DZ G2Mphase                      | -0.0067936| 0.1420384| -4.379118| 0.0001280| 0.0019915| -1.104915|
|csMBC FCRL4/5+                   | -0.0033821| 0.0714178| -4.202144| 0.0002105| 0.0019915| -1.595011|
|Memory B cells                   |  0.0145601| 0.3883601|  4.161395| 0.0002387| 0.0019915| -1.716354|
|CD4 TFH                          | -0.0085537| 0.2320508| -4.114150| 0.0002691| 0.0019915| -1.836690|
|CD8 TF                           |  0.0070714| 0.1547135|  4.046547| 0.0003248| 0.0020031| -2.021358|
|DZ early  Sphase                 | -0.0079620| 0.1512945| -3.846497| 0.0005645| 0.0029839| -2.562110|
|DZ GCB                           | -0.0053032| 0.1609978| -3.219026| 0.0030307| 0.0140171| -4.187079|
|GC-commited metabolic activation | -0.0049868| 0.0966337| -3.032760| 0.0048917| 0.0201103| -4.643030|
|Pre-T cells                      | -0.0068313| 0.0383735| -2.758206| 0.0097032| 0.0340046| -5.287862|
print(knitr::kable(toptable.props, caption = paste0("Proportions Toptable results: ", tissue)))


Table: Proportions Toptable results: Adenoids

|                       |      logFC|   AveExpr|         t|   P.Value| adj.P.Val|         B|
|:----------------------|----------:|---------:|---------:|---------:|---------:|---------:|
|DZ late Sphase         | -0.0026081| 0.0253441| -5.957600| 0.0000018| 0.0000663|  1.451431|
|CD4 TFH                | -0.0037602| 0.0550639| -4.779690| 0.0000468| 0.0008658| -1.822607|
|DZ G2Mphase            | -0.0017237| 0.0213672| -4.293384| 0.0001795| 0.0022138| -3.156687|
|csMBC FCRL4/5+         | -0.0004774| 0.0053718| -4.096114| 0.0003067| 0.0024490| -3.685954|
|Memory B cells         |  0.0100725| 0.1482938|  4.069820| 0.0003309| 0.0024490| -3.759882|
|CD8 TF                 |  0.0022942| 0.0253315|  3.824678| 0.0006427| 0.0039636| -4.410879|
|DZ early  Sphase       | -0.0022006| 0.0246557| -3.156666| 0.0037064| 0.0195908| -6.106548|
|DZ GCB                 | -0.0014881| 0.0269669| -2.967503| 0.0059633| 0.0275802| -6.559260|
|Early GC-committed NBC | -0.0007410| 0.0148863| -2.705660| 0.0112844| 0.0463915| -7.159900|
|CD4 T proliferating    | -0.0004359| 0.0062582| -2.484113| 0.0189912| 0.0702673| -7.642512|
get_age_group_color <- function(age) {
  if (age >= 1 && age <= 5) {
    return("orange")  # Preschool (1-5 years)
  } else if (age > 5 && age <= 12) {
    return("purple")  # Kids (6-11 years)
  } else if (age > 12 && age <= 17) {
    return("darkgreen")  # Adolescent (12-17 years)
  } else {
    return("black")  # Default color for other cases
  }
}
age_group_colors <- sapply(age, get_age_group_color)
  
par(mfrow=c(1,1))
for (i in rownames(toptable.transformedProps)) {
  plot(age, props$TransformedProps[i,], 
       pch=16, cex=3, ylab="Transformed Proportions", cex.lab=1.5, cex.axis=1.5,cex.main=2, col=age_group_colors)
  abline(a=fit$coefficients[i, 1], b=fit$coefficients[i, 2], col=4, lwd=2)
  title(paste0(tissue, "-", i, " : Age as Continuous"), cex.main = 1.2, adj = 0)
}

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

Plot results for Sex

coef = "sexM"
toptable.transformedProps.sex <- topTable(fit, coef = coef) 


# Plot Sex
cat(paste0("#### Sex"," {.tabset}\n\n"))
#### Sex {.tabset}
  par(mfrow=c(1,2))
  for (i in rownames(toptable.transformedProps.sex)) {
    plot(sex, props$TransformedProps[i,], 
         pch=16, cex=3, ylab="Transformed Proportions", xlab="Sex", cex.lab=1.5, cex.axis=1.5,
         cex.main=2, col=c("hotpink", "darkblue"))
    abline(a=fit$coefficients[i, 1], b=fit$coefficients[i, 3], col=4, 
           lwd=2)
    title(paste0(tissue, "-", i), cex.main = 1.2, adj = 0)
}

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

Interaction model for Age and Sex

design <- model.matrix(~age*sex)
design
   (Intercept)   age sexM age:sexM
1            1  3.62    1     3.62
2            1  3.29    0     0.00
3            1  6.79    0     0.00
4            1  5.82    0     0.00
5            1  1.64    1     1.64
6            1  3.73    1     3.73
7            1  2.31    1     2.31
8            1  3.82    1     3.82
9            1  6.67    0     0.00
10           1  2.73    1     2.73
11           1  5.02    0     0.00
12           1  3.93    1     3.93
13           1  3.76    1     3.76
14           1  4.45    1     4.45
15           1  5.28    0     0.00
16           1 11.27    0     0.00
17           1  8.90    1     8.90
18           1 15.19    1    15.19
19           1  2.41    1     2.41
20           1  1.58    0     0.00
21           1  2.86    0     0.00
22           1  8.01    1     8.01
23           1 11.16    1    11.16
24           1  7.34    0     0.00
25           1  6.42    1     6.42
26           1 11.57    1    11.57
27           1 10.54    0     0.00
28           1 11.23    1    11.23
29           1 12.75    1    12.75
30           1  7.77    0     0.00
31           1 13.22    0     0.00
32           1 12.21    0     0.00
attr(,"assign")
[1] 0 1 2 3
attr(,"contrasts")
attr(,"contrasts")$sex
[1] "contr.treatment"
fit <- lmFit(props$TransformedProps, design) 

cont.matrix <- cbind(
  AgeInFemales = c(0, 1, 0, 0),
  AgeInMales = c(0, 1, 0, 1),
  Diff = c(0, 0, 0, 1)
)
cont.matrix
     AgeInFemales AgeInMales Diff
[1,]            0          0    0
[2,]            1          1    0
[3,]            0          0    0
[4,]            0          1    1
fit2 <- contrasts.fit(fit, cont.matrix) 
fit2 <- eBayes(fit2)

coef = "Diff"
toptable.transformedProps <- topTable(fit2, coef = coef) 
toptable.transformedProps
                             logFC    AveExpr         t     P.Value adj.P.Val
Neutrophils           -0.008238283 0.02632626 -2.882840 0.007139463 0.2641601
Plasma B cells        -0.006036302 0.16304236 -2.267821 0.030538199 0.5649567
csMBC FCRL4/5+         0.002310903 0.07141775  1.742044 0.091523758 0.5853223
B cells                0.004615980 0.04415960  1.587945 0.122557403 0.5853223
CD8 TN                 0.006390036 0.14835309  1.584799 0.123271556 0.5853223
CD8 TF                 0.004598912 0.15471351  1.581915 0.123929182 0.5853223
CD4 TCM                0.005191868 0.13350483  1.508555 0.141647298 0.5853223
Double negative T      0.002530382 0.06317316  1.481409 0.148700545 0.5853223
CD4 T proliferating    0.002691442 0.07685101  1.456340 0.155461715 0.5853223
Monocytes/macrophages  0.003007789 0.11595110  1.439594 0.160113095 0.5853223
                              B
Neutrophils           -4.480896
Plasma B cells        -5.821961
csMBC FCRL4/5+        -6.782023
B cells               -7.024793
CD8 TN                -7.029552
CD8 TF                -7.033907
CD4 TCM               -7.142429
Double negative T     -7.181460
CD4 T proliferating   -7.216961
Monocytes/macrophages -7.240381

Save results

out <- here("output",
            "CSV_v2",
             paste0("G000231_Neeland_",tissue,".propeller.xlsx"))
if (!file.exists(out)) {
  write.xlsx(toptable.transformedProps, file = out, rowNames= T)
}

Age modelling across GC cell subsets (population)

idx <- which(merged_obj$cell_labels %in% "Germinal centre B cells")
merged_obj <- merged_obj[,idx]
merged_obj
An object of class Seurat 
17456 features across 42615 samples within 1 assay 
Active assay: RNA (17456 features, 2000 variable features)
 4 layers present: data.2, counts.2, scale.data.2, scale.data
 2 dimensional reductions calculated: pca, umap.merged

Repeat modeling steps

metadata_df <- data.frame(
  sample = merged_obj$sample_id, 
  #donor = merged_obj$donor_id,
  age_years = as.character(merged_obj$age_years),  
  cell_type = merged_obj$cell_labels_v2
)
metadata_df$age_years <- as.numeric(metadata_df$age_years)

# Calculate cell type proportions within each sample, age group, and cell type
barplot_data <- metadata_df %>%
  group_by(sample, age_years, cell_type) %>%
  summarise(n_cells = n()) %>%
  ungroup() %>%
  group_by(sample, age_years) %>%
  mutate(n_cells_total = sum(n_cells)) %>%
  ungroup() %>%
  mutate(percentage_cells = n_cells / n_cells_total)
`summarise()` has grouped output by 'sample', 'age_years'. You can override
using the `.groups` argument.
barplot_data <- barplot_data %>%
  arrange(age_years)

b <- ggplot(barplot_data, aes(x = reorder(paste(sample, age_years, sep = ":"), age_years),
                         y = percentage_cells, fill = cell_type)) +
  geom_bar(stat = "identity") +
  ggtitle(paste0("Age vs Cell Type Proportions (T cell population): ", tissue)) +
  labs(x = "Sample:Age (Years)", y = "Proportion", fill = "Cell Type") +
  scale_fill_manual(values = color_palette) +
  theme_minimal() +
  theme(
    plot.title = element_text(size = 13, hjust = 0.5, face = "bold"),
    legend.position = "top",
    axis.text.x = element_text(angle = 45, hjust = 1)
  )
b

props <- getTransformedProps(clusters = merged_obj$cell_labels_v2,
                               sample = merged_obj$sample_id, transform = "asin")
Performing arcsin square root transformation of proportions
# Plot Cell Type Mean Variance
p1 <- plotCellTypeMeanVar(props$Counts)
Using classic mode.

# Plot Cell Type Proportions Mean Variance
p2 <- plotCellTypePropsMeanVar(props$Counts)

p1 / p2
numeric(0)
print(knitr::kable(props$Proportions, caption = "Cell-type proportions (GC cell population) in samples"))


Table: Cell-type proportions (GC cell population) in samples

|                                 |      s042|      s043|      s044|      s045|      s046|      s047|      s048|      s049|      s050|      s051|      s052|      s053|      s054|      s055|      s056|      s057|      s122|      s123|      s124|      s125|      s126|      s127|      s128|      s129|      s130|      s131|      s132|      s133|      s134|      s135|      s136|      s137|
|:--------------------------------|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|---------:|
|csMBC FCRL4/5+                   | 0.0240700| 0.0637119| 0.0249671| 0.0186386| 0.0302267| 0.0202775| 0.0284957| 0.0162602| 0.0274415| 0.0198864| 0.0234474| 0.0222822| 0.0176668| 0.0105798| 0.0168350| 0.0691244| 0.0466563| 0.0124138| 0.0276119| 0.0326087| 0.0293564| 0.0156250| 0.0289608| 0.0307167| 0.0094406| 0.1165049| 0.0267335| 0.0224467| 0.0188867| 0.0138504| 0.0178947| 0.0058939|
|Cycling GCB                      | 0.0598104| 0.0734072| 0.0328515| 0.0737439| 0.0764064| 0.0384205| 0.0841617| 0.0872136| 0.0677966| 0.0577652| 0.0576679| 0.0708980| 0.0533049| 0.0639018| 0.0729517| 0.0921659| 0.0575428| 0.0468966| 0.0671642| 0.1173913| 0.0677456| 0.3571429| 0.1925043| 0.0255973| 0.0545455| 0.1229773| 0.0167084| 0.0364759| 0.0318091| 0.0493075| 0.0568421| 0.0445318|
|DZ early  Sphase                 | 0.1072210| 0.1260388| 0.1116951| 0.0915721| 0.1263644| 0.0928495| 0.1186216| 0.0805617| 0.1138015| 0.1060606| 0.1210393| 0.0756246| 0.0828511| 0.1083369| 0.0684624| 0.0645161| 0.0668740| 0.0993103| 0.1291045| 0.1108696| 0.1117802| 0.1755952| 0.0817717| 0.0853242| 0.1230769| 0.0776699| 0.1152882| 0.0942761| 0.1103380| 0.1224377| 0.1105263| 0.0556647|
|DZ G2Mphase                      | 0.0948213| 0.1094183| 0.1077530| 0.0753647| 0.1234257| 0.1077908| 0.0927767| 0.1034738| 0.1000807| 0.0956439| 0.1007605| 0.1201891| 0.0743223| 0.0998730| 0.0763187| 0.0552995| 0.0855365| 0.0965517| 0.0940299| 0.0956522| 0.0948438| 0.0468750| 0.0459966| 0.0699659| 0.1087413| 0.0711974| 0.1094403| 0.0785634| 0.1003976| 0.1130194| 0.0915789| 0.0720367|
|DZ GCB                           | 0.1349380| 0.1038781| 0.1038108| 0.1207455| 0.1120907| 0.1366062| 0.0987409| 0.1167775| 0.1452785| 0.1278409| 0.1172370| 0.1087103| 0.1108742| 0.1544647| 0.1627385| 0.1520737| 0.1539658| 0.1255172| 0.1029851| 0.1000000| 0.1260820| 0.0714286| 0.0954003| 0.0887372| 0.1115385| 0.0938511| 0.1203008| 0.1066218| 0.1530815| 0.1141274| 0.1031579| 0.1250819|
|DZ GCB Noproli-memory like       | 0.0138585| 0.0166205| 0.0262812| 0.0307942| 0.0037783| 0.0085379| 0.0404241| 0.0133038| 0.0104923| 0.0160985| 0.0082383| 0.0236327| 0.0063966| 0.0740584| 0.0213244| 0.0368664| 0.0062208| 0.0027586| 0.0082090| 0.0054348| 0.0112909| 0.0178571| 0.0102215| 0.0153584| 0.0052448| 0.0161812| 0.0125313| 0.0078563| 0.0099404| 0.0149584| 0.0105263| 0.0137525|
|DZ late Sphase                   | 0.1254559| 0.1398892| 0.1432326| 0.0956240| 0.1335013| 0.0992529| 0.1404904| 0.1226903| 0.1162228| 0.1515152| 0.1267427| 0.1033086| 0.0862016| 0.1066441| 0.0864198| 0.0783410| 0.1213064| 0.1034483| 0.1694030| 0.1369565| 0.1223184| 0.0238095| 0.0323680| 0.1177474| 0.1220280| 0.0711974| 0.1194653| 0.0780022| 0.1252485| 0.1074792| 0.1105263| 0.0687623|
|DZtoLZ GCB transition            | 0.1466083| 0.1260388| 0.2115637| 0.2277147| 0.1381192| 0.2913554| 0.1285620| 0.2668145| 0.1743341| 0.2054924| 0.2205323| 0.2268737| 0.1553457| 0.1421921| 0.2469136| 0.1797235| 0.2970451| 0.3406897| 0.2149254| 0.1978261| 0.1987204| 0.1510417| 0.4190801| 0.3071672| 0.2849650| 0.2200647| 0.2664996| 0.3372615| 0.2445328| 0.2493075| 0.2494737| 0.3320236|
|Early GC-committed NBC           | 0.0656455| 0.0470914| 0.0525624| 0.0802269| 0.0512175| 0.0544290| 0.0556660| 0.0746489| 0.0548830| 0.0587121| 0.0671736| 0.0938555| 0.0682303| 0.0596699| 0.0572391| 0.1013825| 0.0653188| 0.0731034| 0.0589552| 0.0619565| 0.0730147| 0.0364583| 0.0408859| 0.0955631| 0.0506993| 0.0647249| 0.0902256| 0.0785634| 0.0834990| 0.0720222| 0.1157895| 0.0661428|
|Early MBC                        | 0.1590080| 0.0941828| 0.1379763| 0.0996759| 0.0965575| 0.1067236| 0.1537442| 0.0532151| 0.1339790| 0.0899621| 0.0817490| 0.1134369| 0.2713981| 0.1320355| 0.1492705| 0.1336406| 0.0637636| 0.0717241| 0.0850746| 0.1086957| 0.1065111| 0.0275298| 0.0051107| 0.0938567| 0.0730769| 0.0711974| 0.0601504| 0.1015713| 0.0844930| 0.0880886| 0.0378947| 0.1971185|
|Early PC precursor               | 0.0138585| 0.0138504| 0.0157687| 0.0089141| 0.0125945| 0.0170758| 0.0106030| 0.0184775| 0.0064568| 0.0132576| 0.0183777| 0.0202566| 0.0280231| 0.0080406| 0.0112233| 0.0046083| 0.0062208| 0.0082759| 0.0104478| 0.0097826| 0.0233346| 0.0096726| 0.0170358| 0.0238908| 0.0122378| 0.0097087| 0.0158730| 0.0162738| 0.0198807| 0.0127424| 0.0473684| 0.0117878|
|GC-commited metabolic activation | 0.0547046| 0.0858726| 0.0315375| 0.0769854| 0.0957179| 0.0266809| 0.0477137| 0.0465632| 0.0492333| 0.0577652| 0.0570342| 0.0209318| 0.0453853| 0.0402031| 0.0303030| 0.0322581| 0.0295490| 0.0193103| 0.0320896| 0.0228261| 0.0350019| 0.0669643| 0.0306644| 0.0460751| 0.0444056| 0.0647249| 0.0467836| 0.0420875| 0.0178926| 0.0426593| 0.0484211| 0.0072037|
fit <- lmFit(props$TransformedProps, design)
fit <- eBayes(fit, robust=TRUE)
toptable.transformedProps <- topTable(fit) 
Removing intercept from test coefficients
fit.prop <- lmFit(props$Proportions, design)
fit.prop <- eBayes(fit.prop, robust=TRUE)
toptable.props <- topTable(fit.prop, sort.by = "F")
Removing intercept from test coefficients
print(knitr::kable(toptable.transformedProps, caption = paste0("Transformed proportions Toptable results: ", tissue)))


Table: Transformed proportions Toptable results: Adenoids

|                                 |        age|       sexM|   age.sexM|   AveExpr|         F|   P.Value| adj.P.Val|
|:--------------------------------|----------:|----------:|----------:|---------:|---------:|---------:|---------:|
|DZtoLZ GCB transition            |  0.0094888| -0.0239776|  0.0051743| 0.4973090| 5.9046469| 0.0024982| 0.0299789|
|Early GC-committed NBC           |  0.0068340|  0.0204215| -0.0057300| 0.2614005| 3.5566912| 0.0246152| 0.1229153|
|DZ late Sphase                   | -0.0059952| -0.0053302| -0.0018078| 0.3321544| 3.3460571| 0.0307288| 0.1229153|
|Early MBC                        | -0.0018975|  0.0322420| -0.0091148| 0.3162679| 2.3354358| 0.0922760| 0.2768279|
|DZ G2Mphase                      | -0.0029690|  0.0048775| -0.0010462| 0.3046049| 1.6142842| 0.2047316| 0.4913557|
|GC-commited metabolic activation | -0.0040201|  0.0015062| -0.0004909| 0.2051218| 1.3039716| 0.2895196| 0.5530865|
|Cycling GCB                      | -0.0072293| -0.0260940|  0.0095590| 0.2656987| 1.0147792| 0.3989096| 0.5530865|
|DZ GCB Noproli-memory like       |  0.0022498|  0.0300034| -0.0060151| 0.1198400| 0.9791156| 0.4143870| 0.5530865|
|DZ early  Sphase                 | -0.0047578| -0.0173860|  0.0028707| 0.3230403| 0.9781693| 0.4148149| 0.5530865|
|csMBC FCRL4/5+                   | -0.0035594| -0.0487736|  0.0061295| 0.1598554| 0.5436824| 0.6558179| 0.7869815|
print(knitr::kable(toptable.props, caption = paste0("Proportions Toptable results: ", tissue)))


Table: Proportions Toptable results: Adenoids

|                                 |        age|       sexM|   age.sexM|   AveExpr|         F|   P.Value| adj.P.Val|
|:--------------------------------|----------:|----------:|----------:|---------:|---------:|---------:|---------:|
|DZtoLZ GCB transition            |  0.0079384| -0.0187380|  0.0045311| 0.2312128| 5.8959280| 0.0027560| 0.0330723|
|Early GC-committed NBC           |  0.0037044|  0.0115831| -0.0031146| 0.0677986| 4.5020169| 0.0100096| 0.0600578|
|DZ late Sphase                   | -0.0036712| -0.0024719| -0.0008197| 0.1089250| 3.7246549| 0.0216838| 0.0867354|
|Early MBC                        | -0.0001415|  0.0276792| -0.0059335| 0.1025754| 1.8019465| 0.1682052| 0.4182741|
|DZ G2Mphase                      | -0.0015913|  0.0034211| -0.0006199| 0.0909918| 1.7682361| 0.1742809| 0.4182741|
|GC-commited metabolic activation | -0.0014956|  0.0006809| -0.0002697| 0.0436109| 1.1459122| 0.3464400| 0.6928801|
|DZ early  Sphase                 | -0.0026563| -0.0091485|  0.0015446| 0.1020476| 0.8983355| 0.4533959| 0.7206013|
|Cycling GCB                      | -0.0033816| -0.0136728|  0.0057667| 0.0752391| 0.8316456| 0.4870624| 0.7206013|
|Early PC precursor               |  0.0009084|  0.0057230| -0.0011009| 0.0148725| 0.6578154| 0.5843738| 0.7206013|
|DZ GCB Noproli-memory like       |  0.0005529|  0.0099786| -0.0016211| 0.0162203| 0.6313186| 0.6005011| 0.7206013|
get_age_group_color <- function(age) {
  if (age >= 1 && age <= 5) {
    return("orange")  # Preschool (1-5 years)
  } else if (age > 5 && age <= 12) {
    return("purple")  # Kids (6-11 years)
  } else if (age > 12 && age <= 17) {
    return("darkgreen")  # Adolescent (12-17 years)
  } else {
    return("black")  # Default color for other cases
  }
}
age_group_colors <- sapply(age, get_age_group_color)
  
sorted_indices <- match(rownames(toptable.transformedProps), rownames(props$Proportions))

par(mfrow=c(1,1))
for (i in sorted_indices) {
  plot(age, props$Proportions[i,], 
       pch=16, cex=3, ylab="Proportions", cex.lab=1.5, cex.axis=1.5,cex.main=2, col=age_group_colors)
  abline(a=fit.prop$coefficients[i, 1], b=fit.prop$coefficients[i, 2], col=4, lwd=2)
  title(paste0(tissue, "-", rownames(props$Proportions)[i], " : Age as Continuous"), cex.main = 1.2, adj = 0)
}

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

Version Author Date
0f07f72 Gunjan Dixit 2024-10-07

# Plot Sex
cat(paste0("#### Sex"," {.tabset}\n\n"))
#### Sex {.tabset}
  par(mfrow=c(1,2))
  for (i in sorted_indices) {
    plot(sex, props$Proportions[i,], 
         pch=16, cex=3, ylab="Proportions", xlab="Sex", cex.lab=1.5, cex.axis=1.5,
         cex.main=2, col=c("hotpink", "darkblue"))
    abline(a=fit.prop$coefficients[i, 1], b=fit.prop$coefficients[i, 3], col=4, 
           lwd=2)
    title(paste0(tissue, "-", rownames(props$Proportions)[i]), cex.main = 1.2, adj = 0)
}

Save results for GCcell population

if (!file.exists(out)) {
  write.xlsx(toptable.transformedProps, file = out, rowNames = TRUE, sheetName = "GCcell_subclustering")
} else {
  write.xlsx(toptable.transformedProps, file = out, rowNames = TRUE, sheetName = "GCcell_subclustering", append = TRUE)
}

Session Info

sessionInfo()
R version 4.3.2 (2023-10-31)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS 15.3

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Australia/Melbourne
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] openxlsx_4.2.5.2            knitr_1.45                 
 [3] kableExtra_1.4.0            edgeR_4.0.16               
 [5] limma_3.58.1                speckle_1.2.0              
 [7] ggridges_0.5.6              scran_1.30.2               
 [9] scuttle_1.12.0              SingleCellExperiment_1.24.0
[11] SummarizedExperiment_1.32.0 Biobase_2.62.0             
[13] GenomicRanges_1.54.1        GenomeInfoDb_1.38.6        
[15] IRanges_2.36.0              S4Vectors_0.40.2           
[17] BiocGenerics_0.48.1         MatrixGenerics_1.14.0      
[19] matrixStats_1.2.0           RColorBrewer_1.1-3         
[21] ggforce_0.4.2               viridis_0.6.5              
[23] viridisLite_0.4.2           paletteer_1.6.0            
[25] gridExtra_2.3               lubridate_1.9.3            
[27] forcats_1.0.0               stringr_1.5.1              
[29] purrr_1.0.2                 readr_2.1.5                
[31] tidyr_1.3.1                 tibble_3.2.1               
[33] ggplot2_3.5.0               tidyverse_2.0.0            
[35] dplyr_1.1.4                 Seurat_5.0.1.9009          
[37] SeuratObject_5.0.1          sp_2.1-3                   
[39] patchwork_1.2.0             glue_1.7.0                 
[41] here_1.0.1                  workflowr_1.7.1            

loaded via a namespace (and not attached):
  [1] RcppAnnoy_0.0.22          splines_4.3.2            
  [3] later_1.3.2               bitops_1.0-7             
  [5] polyclip_1.10-6           fastDummies_1.7.3        
  [7] lifecycle_1.0.4           rprojroot_2.0.4          
  [9] globals_0.16.2            processx_3.8.3           
 [11] lattice_0.22-5            MASS_7.3-60.0.1          
 [13] magrittr_2.0.3            plotly_4.10.4            
 [15] sass_0.4.8                rmarkdown_2.25           
 [17] jquerylib_0.1.4           yaml_2.3.8               
 [19] metapod_1.10.1            httpuv_1.6.14            
 [21] sctransform_0.4.1         zip_2.3.1                
 [23] spam_2.10-0               spatstat.sparse_3.0-3    
 [25] reticulate_1.35.0         cowplot_1.1.3            
 [27] pbapply_1.7-2             abind_1.4-5              
 [29] zlibbioc_1.48.0           Rtsne_0.17               
 [31] RCurl_1.98-1.14           tweenr_2.0.3             
 [33] git2r_0.33.0              GenomeInfoDbData_1.2.11  
 [35] ggrepel_0.9.5             irlba_2.3.5.1            
 [37] listenv_0.9.1             spatstat.utils_3.0-4     
 [39] goftest_1.2-3             RSpectra_0.16-1          
 [41] dqrng_0.3.2               spatstat.random_3.2-2    
 [43] fitdistrplus_1.1-11       parallelly_1.37.0        
 [45] svglite_2.1.3             DelayedMatrixStats_1.24.0
 [47] DelayedArray_0.28.0       leiden_0.4.3.1           
 [49] codetools_0.2-19          xml2_1.3.6               
 [51] tidyselect_1.2.0          farver_2.1.1             
 [53] ScaledMatrix_1.10.0       spatstat.explore_3.2-6   
 [55] jsonlite_1.8.8            BiocNeighbors_1.20.2     
 [57] ellipsis_0.3.2            progressr_0.14.0         
 [59] survival_3.5-8            systemfonts_1.0.5        
 [61] tools_4.3.2               ica_1.0-3                
 [63] Rcpp_1.0.12               SparseArray_1.2.4        
 [65] xfun_0.42                 withr_3.0.0              
 [67] fastmap_1.1.1             bluster_1.12.0           
 [69] fansi_1.0.6               rsvd_1.0.5               
 [71] callr_3.7.5               digest_0.6.34            
 [73] timechange_0.3.0          R6_2.5.1                 
 [75] mime_0.12                 colorspace_2.1-0         
 [77] scattermore_1.2           tensor_1.5               
 [79] spatstat.data_3.0-4       utf8_1.2.4               
 [81] generics_0.1.3            data.table_1.15.0        
 [83] httr_1.4.7                htmlwidgets_1.6.4        
 [85] S4Arrays_1.2.0            whisker_0.4.1            
 [87] uwot_0.1.16               pkgconfig_2.0.3          
 [89] gtable_0.3.4              lmtest_0.9-40            
 [91] XVector_0.42.0            htmltools_0.5.7          
 [93] dotCall64_1.1-1           scales_1.3.0             
 [95] png_0.1-8                 rstudioapi_0.15.0        
 [97] tzdb_0.4.0                reshape2_1.4.4           
 [99] nlme_3.1-164              cachem_1.0.8             
[101] zoo_1.8-12                KernSmooth_2.23-22       
[103] parallel_4.3.2            miniUI_0.1.1.1           
[105] pillar_1.9.0              grid_4.3.2               
[107] vctrs_0.6.5               RANN_2.6.1               
[109] promises_1.2.1            BiocSingular_1.18.0      
[111] beachmat_2.18.1           xtable_1.8-4             
[113] cluster_2.1.6             evaluate_0.23            
[115] locfit_1.5-9.8            cli_3.6.2                
[117] compiler_4.3.2            rlang_1.1.3              
[119] crayon_1.5.2              future.apply_1.11.1      
[121] labeling_0.4.3            rematch2_2.1.2           
[123] ps_1.7.6                  getPass_0.2-4            
[125] plyr_1.8.9                fs_1.6.3                 
[127] stringi_1.8.3             BiocParallel_1.36.0      
[129] deldir_2.0-2              munsell_0.5.0            
[131] lazyeval_0.2.2            spatstat.geom_3.2-8      
[133] Matrix_1.6-5              RcppHNSW_0.6.0           
[135] hms_1.1.3                 sparseMatrixStats_1.14.0 
[137] future_1.33.1             statmod_1.5.0            
[139] shiny_1.8.0               highr_0.10               
[141] ROCR_1.0-11               igraph_2.0.2             
[143] bslib_0.6.1              

sessionInfo()
R version 4.3.2 (2023-10-31)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS 15.3

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Australia/Melbourne
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] openxlsx_4.2.5.2            knitr_1.45                 
 [3] kableExtra_1.4.0            edgeR_4.0.16               
 [5] limma_3.58.1                speckle_1.2.0              
 [7] ggridges_0.5.6              scran_1.30.2               
 [9] scuttle_1.12.0              SingleCellExperiment_1.24.0
[11] SummarizedExperiment_1.32.0 Biobase_2.62.0             
[13] GenomicRanges_1.54.1        GenomeInfoDb_1.38.6        
[15] IRanges_2.36.0              S4Vectors_0.40.2           
[17] BiocGenerics_0.48.1         MatrixGenerics_1.14.0      
[19] matrixStats_1.2.0           RColorBrewer_1.1-3         
[21] ggforce_0.4.2               viridis_0.6.5              
[23] viridisLite_0.4.2           paletteer_1.6.0            
[25] gridExtra_2.3               lubridate_1.9.3            
[27] forcats_1.0.0               stringr_1.5.1              
[29] purrr_1.0.2                 readr_2.1.5                
[31] tidyr_1.3.1                 tibble_3.2.1               
[33] ggplot2_3.5.0               tidyverse_2.0.0            
[35] dplyr_1.1.4                 Seurat_5.0.1.9009          
[37] SeuratObject_5.0.1          sp_2.1-3                   
[39] patchwork_1.2.0             glue_1.7.0                 
[41] here_1.0.1                  workflowr_1.7.1            

loaded via a namespace (and not attached):
  [1] RcppAnnoy_0.0.22          splines_4.3.2            
  [3] later_1.3.2               bitops_1.0-7             
  [5] polyclip_1.10-6           fastDummies_1.7.3        
  [7] lifecycle_1.0.4           rprojroot_2.0.4          
  [9] globals_0.16.2            processx_3.8.3           
 [11] lattice_0.22-5            MASS_7.3-60.0.1          
 [13] magrittr_2.0.3            plotly_4.10.4            
 [15] sass_0.4.8                rmarkdown_2.25           
 [17] jquerylib_0.1.4           yaml_2.3.8               
 [19] metapod_1.10.1            httpuv_1.6.14            
 [21] sctransform_0.4.1         zip_2.3.1                
 [23] spam_2.10-0               spatstat.sparse_3.0-3    
 [25] reticulate_1.35.0         cowplot_1.1.3            
 [27] pbapply_1.7-2             abind_1.4-5              
 [29] zlibbioc_1.48.0           Rtsne_0.17               
 [31] RCurl_1.98-1.14           tweenr_2.0.3             
 [33] git2r_0.33.0              GenomeInfoDbData_1.2.11  
 [35] ggrepel_0.9.5             irlba_2.3.5.1            
 [37] listenv_0.9.1             spatstat.utils_3.0-4     
 [39] goftest_1.2-3             RSpectra_0.16-1          
 [41] dqrng_0.3.2               spatstat.random_3.2-2    
 [43] fitdistrplus_1.1-11       parallelly_1.37.0        
 [45] svglite_2.1.3             DelayedMatrixStats_1.24.0
 [47] DelayedArray_0.28.0       leiden_0.4.3.1           
 [49] codetools_0.2-19          xml2_1.3.6               
 [51] tidyselect_1.2.0          farver_2.1.1             
 [53] ScaledMatrix_1.10.0       spatstat.explore_3.2-6   
 [55] jsonlite_1.8.8            BiocNeighbors_1.20.2     
 [57] ellipsis_0.3.2            progressr_0.14.0         
 [59] survival_3.5-8            systemfonts_1.0.5        
 [61] tools_4.3.2               ica_1.0-3                
 [63] Rcpp_1.0.12               SparseArray_1.2.4        
 [65] xfun_0.42                 withr_3.0.0              
 [67] fastmap_1.1.1             bluster_1.12.0           
 [69] fansi_1.0.6               rsvd_1.0.5               
 [71] callr_3.7.5               digest_0.6.34            
 [73] timechange_0.3.0          R6_2.5.1                 
 [75] mime_0.12                 colorspace_2.1-0         
 [77] scattermore_1.2           tensor_1.5               
 [79] spatstat.data_3.0-4       utf8_1.2.4               
 [81] generics_0.1.3            data.table_1.15.0        
 [83] httr_1.4.7                htmlwidgets_1.6.4        
 [85] S4Arrays_1.2.0            whisker_0.4.1            
 [87] uwot_0.1.16               pkgconfig_2.0.3          
 [89] gtable_0.3.4              lmtest_0.9-40            
 [91] XVector_0.42.0            htmltools_0.5.7          
 [93] dotCall64_1.1-1           scales_1.3.0             
 [95] png_0.1-8                 rstudioapi_0.15.0        
 [97] tzdb_0.4.0                reshape2_1.4.4           
 [99] nlme_3.1-164              cachem_1.0.8             
[101] zoo_1.8-12                KernSmooth_2.23-22       
[103] parallel_4.3.2            miniUI_0.1.1.1           
[105] pillar_1.9.0              grid_4.3.2               
[107] vctrs_0.6.5               RANN_2.6.1               
[109] promises_1.2.1            BiocSingular_1.18.0      
[111] beachmat_2.18.1           xtable_1.8-4             
[113] cluster_2.1.6             evaluate_0.23            
[115] locfit_1.5-9.8            cli_3.6.2                
[117] compiler_4.3.2            rlang_1.1.3              
[119] crayon_1.5.2              future.apply_1.11.1      
[121] labeling_0.4.3            rematch2_2.1.2           
[123] ps_1.7.6                  getPass_0.2-4            
[125] plyr_1.8.9                fs_1.6.3                 
[127] stringi_1.8.3             BiocParallel_1.36.0      
[129] deldir_2.0-2              munsell_0.5.0            
[131] lazyeval_0.2.2            spatstat.geom_3.2-8      
[133] Matrix_1.6-5              RcppHNSW_0.6.0           
[135] hms_1.1.3                 sparseMatrixStats_1.14.0 
[137] future_1.33.1             statmod_1.5.0            
[139] shiny_1.8.0               highr_0.10               
[141] ROCR_1.0-11               igraph_2.0.2             
[143] bslib_0.6.1