Last updated: 2025-02-07
Checks: 7 0
Knit directory: paed-airway-allTissues/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20230811)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version fc1fda5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .RData
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: data/.DS_Store
Ignored: data/RDS/
Ignored: output/.DS_Store
Ignored: output/CSV/.DS_Store
Ignored: output/G000231_Neeland_batch1/
Ignored: output/G000231_Neeland_batch2_1/
Ignored: output/G000231_Neeland_batch2_2/
Ignored: output/G000231_Neeland_batch3/
Ignored: output/G000231_Neeland_batch4/
Ignored: output/G000231_Neeland_batch5/
Ignored: output/G000231_Neeland_batch9_1/
Ignored: output/RDS/
Ignored: output/plots/
Untracked files:
Untracked: analysis/03_Batch_Integration.Rmd
Untracked: analysis/Age_proportions.Rmd
Untracked: analysis/Age_proportions_AllBatches.Rmd
Untracked: analysis/All_Batches_QCExploratory_v2.Rmd
Untracked: analysis/All_metadata.Rmd
Untracked: analysis/Annotation_BAL.Rmd
Untracked: analysis/Annotation_Bronchial_brushings.Rmd
Untracked: analysis/Annotation_Nasal_brushings.Rmd
Untracked: analysis/BatchCorrection_Adenoids.Rmd
Untracked: analysis/BatchCorrection_Nasal_brushings.Rmd
Untracked: analysis/BatchCorrection_Tonsils.Rmd
Untracked: analysis/Batch_Integration_&_Downstream_analysis.Rmd
Untracked: analysis/Batch_correction_&_Downstream.Rmd
Untracked: analysis/Cell_cycle_regression.Rmd
Untracked: analysis/Clustering_Tonsils_v2.Rmd
Untracked: analysis/Master_metadata.Rmd
Untracked: analysis/Pediatric_Vs_Adult_Atlases.Rmd
Untracked: analysis/Preprocessing_Batch1_Nasal_brushings.Rmd
Untracked: analysis/Preprocessing_Batch2_Tonsils.Rmd
Untracked: analysis/Preprocessing_Batch3_Adenoids.Rmd
Untracked: analysis/Preprocessing_Batch4_Bronchial_brushings.Rmd
Untracked: analysis/Preprocessing_Batch5_Nasal_brushings.Rmd
Untracked: analysis/Preprocessing_Batch6_BAL.Rmd
Untracked: analysis/Preprocessing_Batch7_Bronchial_brushings.Rmd
Untracked: analysis/Preprocessing_Batch8_Adenoids.Rmd
Untracked: analysis/Preprocessing_Batch9_Tonsils.Rmd
Untracked: analysis/TonsilsVsAdenoids.Rmd
Untracked: analysis/cell_cycle_regression.R
Untracked: analysis/testing_age_all.Rmd
Untracked: code/pseudobulk_analysis.R
Untracked: data/Cell_labels_Gunjan_v2/
Untracked: data/Cell_labels_Mel/
Untracked: data/Cell_labels_Mel_v2/
Untracked: data/Cell_labels_Mel_v3/
Untracked: data/Cell_labels_modified_Gunjan/
Untracked: data/Gene_sets/
Untracked: data/Hs.c2.cp.reactome.v7.1.entrez.rds
Untracked: data/Raw_feature_bc_matrix/
Untracked: data/cell_labels_Mel_v4_Dec2024/
Untracked: data/celltypes_Mel_GD_v3.xlsx
Untracked: data/celltypes_Mel_GD_v4_no_dups.xlsx
Untracked: data/celltypes_Mel_modified.xlsx
Untracked: data/celltypes_Mel_v2.csv
Untracked: data/celltypes_Mel_v2.xlsx
Untracked: data/celltypes_Mel_v2_MN.xlsx
Untracked: data/celltypes_for_mel_MN.xlsx
Untracked: data/col_palette.xlsx
Untracked: data/earlyAIR_sample_sheets_combined.xlsx
Untracked: figure/DGE_Tonsils_CD8.Rmd/
Untracked: output/CSV/All_tissues.propeller.xlsx
Untracked: output/CSV/Bronchial_brushings/
Untracked: output/CSV/Bronchial_brushings_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/
Untracked: output/CSV/G000231_Neeland_Adenoids.propeller.xlsx
Untracked: output/CSV/G000231_Neeland_Bronchial_brushings.propeller.xlsx
Untracked: output/CSV/G000231_Neeland_Nasal_brushings.propeller.xlsx
Untracked: output/CSV/G000231_Neeland_Tonsils.propeller.xlsx
Untracked: output/CSV/Nasal_brushings/
Untracked: output/DGE/Adenoids_B_memory/
Untracked: output/DGE/Adenoids_CD4/
Untracked: output/DGE/Adenoids_CD8/
Untracked: output/DGE/Adenoids_Cycling_GCB/
Untracked: output/DGE/Adenoids_IFN/
Untracked: output/DGE/Tonsil_Atlas_CD4/
Untracked: output/DGE/Tonsils/DGE_Age_summary_Tonsils.xlsx
Untracked: output/DGE/Tonsils/Tonsils_Naïve B cells/
Untracked: output/DGE/Tonsils/~$DGE_Age_summary_Tonsils.xlsx
Untracked: output/DGE/Tonsils_CD4/
Untracked: output/DGE/Tonsils_CD8/
Untracked: output/DGE/Tonsils_IFN/
Untracked: test_col.csv
Untracked: test_col.txt
Untracked: test_col.xlsx
Unstaged changes:
Deleted: 02_QC_exploratoryPlots.Rmd
Deleted: 02_QC_exploratoryPlots.html
Modified: analysis/00_AllBatches_overview.Rmd
Modified: analysis/01_QC_emptyDrops.Rmd
Modified: analysis/02_QC_exploratoryPlots.Rmd
Modified: analysis/Adenoids.Rmd
Modified: analysis/Adenoids_v2.Rmd
Modified: analysis/Age_modeling.Rmd
Modified: analysis/AllBatches_QCExploratory.Rmd
Modified: analysis/BAL.Rmd
Modified: analysis/BAL_v2.Rmd
Modified: analysis/Bronchial_brushings.Rmd
Modified: analysis/Bronchial_brushings_v2.Rmd
Modified: analysis/Nasal_brushings.Rmd
Modified: analysis/Nasal_brushings_v2.Rmd
Modified: analysis/Subclustering_Adenoids.Rmd
Modified: analysis/Subclustering_BAL.Rmd
Modified: analysis/Subclustering_Bronchial_brushings.Rmd
Modified: analysis/Subclustering_Nasal_brushings.Rmd
Modified: analysis/Subclustering_Tonsils.Rmd
Modified: analysis/Tonsils.Rmd
Modified: analysis/Tonsils_v2.Rmd
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c0.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c1.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c10.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c11.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c12.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c13.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c14.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c15.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c16.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c17.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c2.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c3.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c4.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c5.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c6.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c7.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c8.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c9.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c0.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c1.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c10.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c11.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c12.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c13.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c14.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c15.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c16.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c17.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c2.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c3.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c4.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c5.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c6.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c7.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c8.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c9.csv
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/DGE_TonsilAtlas.Rmd
) and
HTML (docs/DGE_TonsilAtlas.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | fc1fda5 | Gunjan Dixit | 2025-02-07 | wflow_publish("analysis/DGE_TonsilAtlas.Rmd") |
Rmd | 9fe8c18 | Gunjan Dixit | 2025-02-07 | Added DGE analysis for Tonsil Atlas |
html | 9fe8c18 | Gunjan Dixit | 2025-02-07 | Added DGE analysis for Tonsil Atlas |
suppressPackageStartupMessages({
library(here)
library(glue)
library(patchwork)
library(Seurat)
library(dplyr)
library(tidyverse)
library(gridExtra)
library(paletteer)
library(viridis)
library(tidyverse)
library(scran)
library(scater)
library(ggridges)
library(speckle)
library(edgeR)
library(limma)
library(knitr)
library(BiocStyle)
library(org.Hs.eg.db)
library(Glimma)
})
seu <- readRDS(here("output/RDS/Other_Atlas_SEUs/Tonsil_Atlas_3P_SEU.rds"))
sce <- SingleCellExperiment(list(counts = seu@assays$RNA@layers$counts),
colData = seu@meta.data)
Loading required package: HDF5Array
Loading required package: DelayedArray
Loading required package: Matrix
Attaching package: 'Matrix'
The following object is masked from 'package:S4Vectors':
expand
The following objects are masked from 'package:tidyr':
expand, pack, unpack
Loading required package: S4Arrays
Loading required package: abind
Attaching package: 'S4Arrays'
The following object is masked from 'package:abind':
abind
The following object is masked from 'package:base':
rowsum
Loading required package: SparseArray
Attaching package: 'DelayedArray'
The following object is masked from 'package:purrr':
simplify
The following objects are masked from 'package:base':
apply, scale, sweep
Loading required package: rhdf5
Attaching package: 'HDF5Array'
The following object is masked from 'package:rhdf5':
h5ls
rownames(sce) <- rownames(seu)
celltypes_to_subset <- "Memory B cells"
pb <- aggregateAcrossCells(sce[, sce$cell_labels_v2 %in% celltypes_to_subset],id = colData(sce[, sce$cell_labels_v2 %in% celltypes_to_subset])[, c("donor_id")])
pb <- pb[, pb$ncells>=50]
pb
class: SingleCellExperiment
dim: 37378 17
metadata(0):
assays(1): counts
rownames(37378): AL627309.1 AL627309.3 ... AC136616.1 AC023491.2
rowData names(0):
colnames(17): BCLL-10-T BCLL-11-T ... BCLL-8-T BCLL-9-T
colData names(46): orig.ident nCount_RNA ... ids ncells
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):
pb <- SingleCellExperiment(list(counts = counts(pb)),
colData = colData(pb) %>%
data.frame %>%
dplyr::select(c("donor_id", "age", "age_group", "sex")) %>%
DataFrame) %>%
addPerCellQCMetrics
pb <- logNormCounts(pb) %>%
runPCA()
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
dge <- DGEList(counts = counts(pb),
samples = colData(pb) %>% data.frame)
keep <- rowSums(dge$counts) > 0
dge <- dge[keep, ]
dim(dge)
[1] 27367 17
dge <- calcNormFactors(dge)
glimmaMDS(dge)
design <- model.matrix(~dge$samples$age + dge$samples$sex)
design
(Intercept) dge$samples$age dge$samples$sexmale
1 1 3 1
2 1 5 0
3 1 3 0
4 1 5 0
5 1 26 1
6 1 33 1
7 1 65 1
8 1 23 1
9 1 19 0
10 1 22 0
11 1 63 1
12 1 25 0
13 1 56 1
14 1 28 1
15 1 35 1
16 1 4 1
17 1 5 1
attr(,"assign")
[1] 0 1 2
attr(,"contrasts")
attr(,"contrasts")$`dge$samples$sex`
[1] "contr.treatment"
v <- voom(dge, design, plot = T)
Version | Author | Date |
---|---|---|
9fe8c18 | Gunjan Dixit | 2025-02-07 |
fit <- lmFit(v, design)
fit <- eBayes(fit)
dt <- decideTests(fit)
summary(dt)
(Intercept) dge$samples$age dge$samples$sexmale
Down 13519 1137 14
NotSig 1793 25281 27333
Up 12055 949 20
sce <- sce[, !is.na(sce$cell_labels_v2)]
sce <- SingleCellExperiment(
assays = list(counts = counts(sce)),
colData = colData(sce)
)
celltypes_list <- readRDS(here("output/RDS/celltype_list_TonsilAtlas.rds"))
summary_list <- list()
summary_list1 <- list()
# Remove "Cycling GCB" from the list
celltypes_list <- celltypes_list[celltypes_list != c("Cycling GCB","MAIT cells","T-IFN" )]
Warning in celltypes_list != c("Cycling GCB", "MAIT cells", "T-IFN"): longer
object length is not a multiple of shorter object length
for (celltype in celltypes_list) {
cat("Processing:", celltype, "\n")
pb <- aggregateAcrossCells(sce[, sce$cell_labels_v2 == celltype],
id = colData(sce[, sce$cell_labels_v2 == celltype])[, "donor_id"])
pb <- pb[, pb$ncells >= 50]
pb <- SingleCellExperiment(list(counts = counts(pb)),
colData = colData(pb) %>%
data.frame %>%
dplyr::select(c("donor_id", "age_years" ,"sex", "age_group")) %>%
DataFrame) %>%
addPerCellQCMetrics()
#pb$age_category <- ifelse(pb$age_years <= 5, 'preschool',
# ifelse(pb$age_years > 5 & pb$age_years <= 11, 'early_childhood',
# ifelse(pb$age_years > 11, 'adolescent', NA)))
pb <- logNormCounts(pb) %>% runPCA()
dge <- DGEList(counts = counts(pb), samples = colData(pb) %>% data.frame)
keep <- rowSums(dge$counts) > 0
dge <- dge[keep, ]
dge <- calcNormFactors(dge)
design <- model.matrix(~ dge$samples$age_years + dge$samples$sex)
v <- voom(dge, design, plot = FALSE)
fit <- lmFit(v, design)
fit <- eBayes(fit)
dt <- decideTests(fit)
top_genes <- topTable(fit, coef = 2, number = Inf, adjust.method = "BH")
dge_res <- summary(dt)
summary_list[[celltype]] <- top_genes
summary_list1[[celltype]] <- dge_res
}
Processing: Monocytes/macrophages/neutrophils
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: Plasmacytoid DCs
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: Other
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: Cycling T
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: Follicular dendritic cells
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: interferon-activated naïve B cells
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: NK cells
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: CD8 TF
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: CD8 TN
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: Gamma delta T
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: Double negative T
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: TFH-LZ-GC
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: CD4 TN
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: CD4 TCM
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: CD4 Treg
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: CD4 TFH
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: CD4 Treg-eff
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: Early PC precursor
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: DZtoLZ GCB transition
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: Plasma B cells
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: Memory B cells
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: Early GC-committed NBC
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: Naïve B cells
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: DZ GCB Noproli-memory like
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: DZ early G2Mphase
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: DZ early Sphase
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: DZ late Sphase
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
Processing: DZ late G2Mphase
Warning in check_numbers(k = k, nu = nu, nv = nv, limit = min(dim(x)) - : more
singular values/vectors requested than available
Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth =
TRUE, : You're computing too large a percentage of total singular values, use a
standard svd instead.
summary_table <- do.call(rbind, lapply(names(summary_list), function(x)
data.frame(CellType = x, summary_list[[x]])))
summary_table1 <- do.call(rbind, lapply(names(summary_list1), function(x)
data.frame(CellType = x, summary_list1[[x]])))
#print(head(summary_table))
print(summary_list1)
$`Monocytes/macrophages/neutrophils`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 27 107 2
NotSig 8750 21199 21319
Up 12556 27 12
$`Plasmacytoid DCs`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 54 4056 2
NotSig 10073 17761 22093
Up 11980 290 12
$Other
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 10982 2918 28
NotSig 3032 16929 25981
Up 12012 6179 17
$`Cycling T`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 7090 158 12
NotSig 4070 22602 22894
Up 11760 160 14
$`Follicular dendritic cells`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 0 46 71
NotSig 5165 19211 19198
Up 14120 28 16
$`interferon-activated naïve B cells`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 3520 3 2
NotSig 6423 21084 21078
Up 11148 4 11
$`NK cells`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 0 1 2
NotSig 3598 19110 19104
Up 15517 4 9
$`CD8 TF`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 2644 90 6
NotSig 7914 22041 22200
Up 11662 89 14
$`CD8 TN`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 7888 174 6
NotSig 3825 22390 22855
Up 11163 312 15
$`Gamma delta T`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 0 11 3
NotSig 432 16053 16070
Up 15652 20 11
$`Double negative T`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 0 15 11
NotSig 4030 17577 17575
Up 13569 7 13
$`TFH-LZ-GC`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 12429 1847 8
NotSig 2314 22925 26736
Up 12020 1991 19
$`CD4 TN`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 10699 81 6
NotSig 2826 24519 24721
Up 11217 142 15
$`CD4 TCM`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 20 1138 4
NotSig 11882 21496 22883
Up 10995 263 10
$`CD4 Treg`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 0 72 2
NotSig 8469 21369 21515
Up 13057 85 9
$`CD4 TFH`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 5 85 7
NotSig 8123 19637 19841
Up 11731 137 11
$`CD4 Treg-eff`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 0 17 4
NotSig 8962 20743 20765
Up 11817 19 10
$`Early PC precursor`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 10591 593 8
NotSig 2400 22578 24135
Up 11166 986 14
$`DZtoLZ GCB transition`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 12801 685 14
NotSig 1767 18496 26402
Up 11868 7255 20
$`Plasma B cells`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 12037 825 8
NotSig 1966 22599 24191
Up 10209 788 13
$`Memory B cells`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 13519 1137 14
NotSig 1793 25281 27333
Up 12055 949 20
$`Early GC-committed NBC`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 12075 506 8
NotSig 2329 25156 25945
Up 11564 306 15
$`Naïve B cells`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 12816 154 10
NotSig 1890 25956 26201
Up 11522 118 17
$`DZ GCB Noproli-memory like`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 9255 534 14
NotSig 2782 17216 23566
Up 11560 5847 17
$`DZ early G2Mphase`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 10261 476 12
NotSig 2165 18274 23755
Up 11359 5035 18
$`DZ early Sphase`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 10379 548 18
NotSig 2425 18403 24465
Up 11696 5549 17
$`DZ late Sphase`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 11312 500 11
NotSig 2024 20112 24892
Up 11588 4312 21
$`DZ late G2Mphase`
(Intercept) dge$samples$age_years dge$samples$sexmale
Down 10385 548 11
NotSig 2285 18673 24111
Up 11468 4917 16
age_summary_table <- summary_table1 %>%
filter(grepl("dge\\$samples\\$age_years", Var2)) %>%
pivot_wider(names_from = Var1, values_from = Freq, values_fill = list(Freq = 0))
print(knitr::kable(age_summary_table, caption = "DGE Age summary: Tonsil Atlas"))
Table: DGE Age summary: Tonsil Atlas
|CellType |Var2 | Down| NotSig| Up|
|:----------------------------------|:---------------------|----:|------:|----:|
|Monocytes/macrophages/neutrophils |dge$samples$age_years | 107| 21199| 27|
|Plasmacytoid DCs |dge$samples$age_years | 4056| 17761| 290|
|Other |dge$samples$age_years | 2918| 16929| 6179|
|Cycling T |dge$samples$age_years | 158| 22602| 160|
|Follicular dendritic cells |dge$samples$age_years | 46| 19211| 28|
|interferon-activated naïve B cells |dge$samples$age_years | 3| 21084| 4|
|NK cells |dge$samples$age_years | 1| 19110| 4|
|CD8 TF |dge$samples$age_years | 90| 22041| 89|
|CD8 TN |dge$samples$age_years | 174| 22390| 312|
|Gamma delta T |dge$samples$age_years | 11| 16053| 20|
|Double negative T |dge$samples$age_years | 15| 17577| 7|
|TFH-LZ-GC |dge$samples$age_years | 1847| 22925| 1991|
|CD4 TN |dge$samples$age_years | 81| 24519| 142|
|CD4 TCM |dge$samples$age_years | 1138| 21496| 263|
|CD4 Treg |dge$samples$age_years | 72| 21369| 85|
|CD4 TFH |dge$samples$age_years | 85| 19637| 137|
|CD4 Treg-eff |dge$samples$age_years | 17| 20743| 19|
|Early PC precursor |dge$samples$age_years | 593| 22578| 986|
|DZtoLZ GCB transition |dge$samples$age_years | 685| 18496| 7255|
|Plasma B cells |dge$samples$age_years | 825| 22599| 788|
|Memory B cells |dge$samples$age_years | 1137| 25281| 949|
|Early GC-committed NBC |dge$samples$age_years | 506| 25156| 306|
|Naïve B cells |dge$samples$age_years | 154| 25956| 118|
|DZ GCB Noproli-memory like |dge$samples$age_years | 534| 17216| 5847|
|DZ early G2Mphase |dge$samples$age_years | 476| 18274| 5035|
|DZ early Sphase |dge$samples$age_years | 548| 18403| 5549|
|DZ late Sphase |dge$samples$age_years | 500| 20112| 4312|
|DZ late G2Mphase |dge$samples$age_years | 548| 18673| 4917|
#writexl::write_xlsx(age_summary_table, path = here("output/DGE/Tonsils/DGE_Age_summary_Tonsils.xlsx"))
sessionInfo()
R version 4.3.2 (2023-10-31)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS 15.3
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Australia/Melbourne
tzcode source: internal
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] HDF5Array_1.30.1 rhdf5_2.46.1
[3] DelayedArray_0.28.0 SparseArray_1.2.4
[5] S4Arrays_1.2.0 abind_1.4-5
[7] Matrix_1.6-5 Glimma_2.12.0
[9] org.Hs.eg.db_3.18.0 AnnotationDbi_1.64.1
[11] BiocStyle_2.30.0 knitr_1.45
[13] edgeR_4.0.16 limma_3.58.1
[15] speckle_1.2.0 ggridges_0.5.6
[17] scater_1.30.1 scran_1.30.2
[19] scuttle_1.12.0 SingleCellExperiment_1.24.0
[21] SummarizedExperiment_1.32.0 Biobase_2.62.0
[23] GenomicRanges_1.54.1 GenomeInfoDb_1.38.6
[25] IRanges_2.36.0 S4Vectors_0.40.2
[27] BiocGenerics_0.48.1 MatrixGenerics_1.14.0
[29] matrixStats_1.2.0 viridis_0.6.5
[31] viridisLite_0.4.2 paletteer_1.6.0
[33] gridExtra_2.3 lubridate_1.9.3
[35] forcats_1.0.0 stringr_1.5.1
[37] purrr_1.0.2 readr_2.1.5
[39] tidyr_1.3.1 tibble_3.2.1
[41] ggplot2_3.5.0 tidyverse_2.0.0
[43] dplyr_1.1.4 Seurat_5.0.1.9009
[45] SeuratObject_5.0.1 sp_2.1-3
[47] patchwork_1.2.0 glue_1.7.0
[49] here_1.0.1 workflowr_1.7.1
loaded via a namespace (and not attached):
[1] fs_1.6.3 spatstat.sparse_3.0-3
[3] bitops_1.0-7 httr_1.4.7
[5] RColorBrewer_1.1-3 tools_4.3.2
[7] sctransform_0.4.1 utf8_1.2.4
[9] R6_2.5.1 lazyeval_0.2.2
[11] uwot_0.1.16 rhdf5filters_1.14.1
[13] withr_3.0.0 progressr_0.14.0
[15] cli_3.6.2 spatstat.explore_3.2-6
[17] fastDummies_1.7.3 sass_0.4.8
[19] spatstat.data_3.0-4 pbapply_1.7-2
[21] parallelly_1.37.0 rstudioapi_0.15.0
[23] RSQLite_2.3.5 generics_0.1.3
[25] ica_1.0-3 spatstat.random_3.2-2
[27] ggbeeswarm_0.7.2 fansi_1.0.6
[29] lifecycle_1.0.4 whisker_0.4.1
[31] yaml_2.3.8 Rtsne_0.17
[33] grid_4.3.2 blob_1.2.4
[35] promises_1.2.1 dqrng_0.3.2
[37] crayon_1.5.2 miniUI_0.1.1.1
[39] lattice_0.22-5 beachmat_2.18.1
[41] cowplot_1.1.3 KEGGREST_1.42.0
[43] pillar_1.9.0 metapod_1.10.1
[45] future.apply_1.11.1 codetools_0.2-19
[47] leiden_0.4.3.1 getPass_0.2-4
[49] data.table_1.15.0 vctrs_0.6.5
[51] png_0.1-8 spam_2.10-0
[53] gtable_0.3.4 rematch2_2.1.2
[55] cachem_1.0.8 xfun_0.42
[57] mime_0.12 survival_3.5-8
[59] statmod_1.5.0 bluster_1.12.0
[61] ellipsis_0.3.2 fitdistrplus_1.1-11
[63] ROCR_1.0-11 nlme_3.1-164
[65] bit64_4.0.5 RcppAnnoy_0.0.22
[67] rprojroot_2.0.4 bslib_0.6.1
[69] irlba_2.3.5.1 vipor_0.4.7
[71] KernSmooth_2.23-22 colorspace_2.1-0
[73] DBI_1.2.2 DESeq2_1.42.1
[75] tidyselect_1.2.0 processx_3.8.3
[77] bit_4.0.5 compiler_4.3.2
[79] git2r_0.33.0 BiocNeighbors_1.20.2
[81] plotly_4.10.4 scales_1.3.0
[83] lmtest_0.9-40 callr_3.7.5
[85] digest_0.6.34 goftest_1.2-3
[87] spatstat.utils_3.0-4 rmarkdown_2.25
[89] XVector_0.42.0 htmltools_0.5.7
[91] pkgconfig_2.0.3 sparseMatrixStats_1.14.0
[93] highr_0.10 fastmap_1.1.1
[95] rlang_1.1.3 htmlwidgets_1.6.4
[97] shiny_1.8.0 DelayedMatrixStats_1.24.0
[99] jquerylib_0.1.4 zoo_1.8-12
[101] jsonlite_1.8.8 BiocParallel_1.36.0
[103] BiocSingular_1.18.0 RCurl_1.98-1.14
[105] magrittr_2.0.3 GenomeInfoDbData_1.2.11
[107] dotCall64_1.1-1 Rhdf5lib_1.24.2
[109] munsell_0.5.0 Rcpp_1.0.12
[111] reticulate_1.35.0 stringi_1.8.3
[113] zlibbioc_1.48.0 MASS_7.3-60.0.1
[115] plyr_1.8.9 parallel_4.3.2
[117] listenv_0.9.1 ggrepel_0.9.5
[119] deldir_2.0-2 Biostrings_2.70.2
[121] splines_4.3.2 tensor_1.5
[123] hms_1.1.3 locfit_1.5-9.8
[125] ps_1.7.6 igraph_2.0.2
[127] spatstat.geom_3.2-8 RcppHNSW_0.6.0
[129] reshape2_1.4.4 ScaledMatrix_1.10.0
[131] evaluate_0.23 BiocManager_1.30.22
[133] tzdb_0.4.0 httpuv_1.6.14
[135] RANN_2.6.1 polyclip_1.10-6
[137] future_1.33.1 scattermore_1.2
[139] rsvd_1.0.5 xtable_1.8-4
[141] RSpectra_0.16-1 later_1.3.2
[143] memoise_2.0.1 beeswarm_0.4.0
[145] cluster_2.1.6 timechange_0.3.0
[147] globals_0.16.2