Last updated: 2024-07-26

Checks: 6 1

Knit directory: paed-airway-allTissues/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230811) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version cedb23d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    data/RDS/
    Ignored:    output/.DS_Store
    Ignored:    output/CSV/.DS_Store
    Ignored:    output/G000231_Neeland_batch1/
    Ignored:    output/G000231_Neeland_batch2_1/
    Ignored:    output/G000231_Neeland_batch2_2/
    Ignored:    output/G000231_Neeland_batch3/
    Ignored:    output/G000231_Neeland_batch4/
    Ignored:    output/G000231_Neeland_batch5/
    Ignored:    output/G000231_Neeland_batch9_1/
    Ignored:    output/RDS/
    Ignored:    output/plots/

Untracked files:
    Untracked:  VennDiagram.2024-07-24_11-48-08.297746.log
    Untracked:  VennDiagram.2024-07-24_12-25-12.854839.log
    Untracked:  VennDiagram.2024-07-24_12-25-22.005094.log
    Untracked:  VennDiagram.2024-07-24_12-29-34.757841.log
    Untracked:  analysis/03_Batch_Integration.Rmd
    Untracked:  analysis/Age_proportions.Rmd
    Untracked:  analysis/Age_proportions_AllBatches.Rmd
    Untracked:  analysis/Batch_Integration_&_Downstream_analysis.Rmd
    Untracked:  analysis/Batch_correction_&_Downstream.Rmd
    Untracked:  analysis/Cell_cycle_regression.Rmd
    Untracked:  analysis/Preprocessing_Batch1_Nasal_brushings.Rmd
    Untracked:  analysis/Preprocessing_Batch2_Tonsils.Rmd
    Untracked:  analysis/Preprocessing_Batch3_Adenoids.Rmd
    Untracked:  analysis/Preprocessing_Batch4_Bronchial_brushings.Rmd
    Untracked:  analysis/Preprocessing_Batch5_Nasal_brushings.Rmd
    Untracked:  analysis/Preprocessing_Batch6_BAL.Rmd
    Untracked:  analysis/Preprocessing_Batch7_Bronchial_brushings.Rmd
    Untracked:  analysis/Preprocessing_Batch8_Adenoids.Rmd
    Untracked:  analysis/Preprocessing_Batch9_Tonsils.Rmd
    Untracked:  analysis/VennDiagram.2024-07-24_11-54-23.569848.log
    Untracked:  analysis/VennDiagram.2024-07-24_11-55-06.582353.log
    Untracked:  analysis/VennDiagram.2024-07-24_12-28-47.017253.log
    Untracked:  analysis/VennDiagram.2024-07-24_12-33-05.913419.log
    Untracked:  analysis/VennDiagram.2024-07-24_13-42-31.593316.log
    Untracked:  analysis/cell_cycle_regression.R
    Untracked:  analysis/test.Rmd
    Untracked:  analysis/testing_age_all.Rmd
    Untracked:  data/Cell_labels_Mel/
    Untracked:  data/Cell_labels_Mel_v2/
    Untracked:  data/Hs.c2.cp.reactome.v7.1.entrez.rds
    Untracked:  data/Raw_feature_bc_matrix/
    Untracked:  data/celltypes_Mel_GD_v3.xlsx
    Untracked:  data/celltypes_Mel_GD_v4_no_dups.xlsx
    Untracked:  data/celltypes_Mel_modified.xlsx
    Untracked:  data/celltypes_Mel_v2.csv
    Untracked:  data/celltypes_Mel_v2.xlsx
    Untracked:  data/celltypes_Mel_v2_MN.xlsx
    Untracked:  data/celltypes_for_mel_MN.xlsx
    Untracked:  data/earlyAIR_sample_sheets_combined.xlsx
    Untracked:  output/CSV/Bronchial_brushings_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/
    Untracked:  stacked_barplot.png
    Untracked:  stacked_barplot_donor_id.png

Unstaged changes:
    Deleted:    02_QC_exploratoryPlots.Rmd
    Deleted:    02_QC_exploratoryPlots.html
    Modified:   analysis/00_AllBatches_overview.Rmd
    Modified:   analysis/01_QC_emptyDrops.Rmd
    Modified:   analysis/02_QC_exploratoryPlots.Rmd
    Modified:   analysis/Age_modeling.Rmd
    Modified:   analysis/AllBatches_QCExploratory.Rmd
    Modified:   analysis/BAL.Rmd
    Modified:   analysis/Bronchial_brushings.Rmd
    Modified:   analysis/Nasal_brushings.Rmd
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c0.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c1.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c10.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c11.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c12.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c13.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c14.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c15.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c16.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c17.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c2.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c3.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c4.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c5.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c6.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c7.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c8.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c9.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c0.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c1.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c10.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c11.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c12.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c13.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c14.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c15.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c16.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c17.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c2.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c3.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c4.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c5.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c6.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c7.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c8.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c9.csv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Nasal_brushings.Rmd) and HTML (docs/Nasal_brushings.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd c20f60f Gunjan Dixit 2024-07-08 Updated marker gene dot plots
html c20f60f Gunjan Dixit 2024-07-08 Updated marker gene dot plots
Rmd 77c742e Gunjan Dixit 2024-06-26 Updated RMarkdown files of all Tissues
html 77c742e Gunjan Dixit 2024-06-26 Updated RMarkdown files of all Tissues
Rmd 4fa7db5 Gunjan Dixit 2024-06-13 Updated Nasal_brushing
html 4fa7db5 Gunjan Dixit 2024-06-13 Updated Nasal_brushing
Rmd db794c0 Gunjan Dixit 2024-06-13 Updated Nasal_brushing.Rmd
html db794c0 Gunjan Dixit 2024-06-13 Updated Nasal_brushing.Rmd
Rmd e0e83af Gunjan Dixit 2024-06-04 Updated reclustering
html e0e83af Gunjan Dixit 2024-06-04 Updated reclustering
html fa7b973 Gunjan Dixit 2024-05-01 Modified/Annotated RMarkdown files
Rmd 320ccbd Gunjan Dixit 2024-05-01 Modified/Annotated RMarkdown files
html 320ccbd Gunjan Dixit 2024-05-01 Modified/Annotated RMarkdown files
Rmd 9492583 Gunjan Dixit 2024-04-26 Added new analysis
html 9492583 Gunjan Dixit 2024-04-26 Added new analysis

Introduction

This Rmarkdown file loads and analyzes the batch-integrated/merged Seurat object for Nasal Brushings (Batch1 and Batch5). It performs clustering at various resolutions ranging from 0-1, followed by visualization of identified clusters and Broad Level 3 cell labels on UMAP. Next, the FindAllMarkers function is used to perform marker gene analysis to identify marker genes for each cluster. The top marker gene is visualized using FeaturePlot, ViolinPlot and Heatmap. The identified marker genes are stored in CSV format for each cluster at the optimum resolution identified using clustree function.

Load libraries

suppressPackageStartupMessages({
  library(BiocStyle)
  library(tidyverse)
  library(here)
  library(glue)
  library(dplyr)
  library(Seurat)
  library(clustree)
  library(kableExtra)
  library(RColorBrewer)
  library(data.table)
  library(ggplot2)
  library(patchwork)
  library(limma)
  library(edgeR)
  library(speckle)
  library(AnnotationDbi)
  library(org.Hs.eg.db)
  library(readxl)
})

Load Input data

Load merged object (batch corrected/integrated) for the tissue.

tissue <- "Nasal_brushings"
out <- here("output/RDS/AllBatches_Harmony_SEUs/G000231_Neeland_Nasal_brushings_batchCorrection.Harmony.clusters.SEU.rds")
merged_obj <- readRDS(out)
merged_obj
An object of class Seurat 
17973 features across 74812 samples within 1 assay 
Active assay: RNA (17973 features, 2000 variable features)
 5 layers present: counts.G000231_batch1, counts.G000231_batch5, scale.data, data.G000231_batch1, data.G000231_batch5
 4 dimensional reductions calculated: pca, umap.unintegrated, harmony, umap.harmony

Clustering

Clustering is done on the “harmony” or batch integrated reduction at resolutions ranging from 0-1.

out1 <- here("output",
            "RDS", "AllBatches_Clustering_SEUs",
             paste0("G000231_Neeland_",tissue,".Clusters.SEU.rds"))
#dir.create(out1)

resolutions <- seq(0.1, 1, by = 0.1)
if (!file.exists(out1)) {
merged_obj <- FindNeighbors(merged_obj, reduction = "harmony", dims = 1:30)
merged_obj <- FindClusters(merged_obj, resolution = seq(0.1, 1, by = 0.1), algorithm = 3)
saveRDS(merged_obj, file = out1)
} else {
    merged_obj <- readRDS(out1)
}

The clustree function is used to visualize the clustering at different resolutions to identify the most optimum resolution.

clustree(merged_obj, prefix = "RNA_snn_res.")

Version Author Date
9492583 Gunjan Dixit 2024-04-26

Based on the clustering tree, we chose an intermediate/optimum resolution of 0.4 where the clustering results are the most stable, with the least amount of shuffling cells.

opt_res <- "RNA_snn_res.0.4"  
n <- nlevels(merged_obj$RNA_snn_res.0.4)
merged_obj$RNA_snn_res.0.4 <- factor(merged_obj$RNA_snn_res.0.4, levels = seq(0,n-1))
merged_obj$seurat_clusters <- NULL
merged_obj$cluster <- merged_obj$RNA_snn_res.0.4
Idents(merged_obj) <- merged_obj$cluster

UMAP after clustering

Defining colours for each cell-type to be consistent with other age-related/cell type composition plots.

my_colors <- c(
  "B cells" = "steelblue",
  "CD4 T cells" = "brown",
  "Double negative T cells" = "gold",
  "CD8 T cells" = "lightgreen",
  "Pre B/T cells" = "orchid",
  "Innate lymphoid cells" = "tan",
  "Natural Killer cells" = "blueviolet",
  "Macrophages" = "green4",
  "Cycling T cells" = "turquoise",
  "Dendritic cells" = "grey80",
  "Gamma delta T cells" = "mediumvioletred",
  "Epithelial lineage" = "darkorange",
  "Granulocytes" = "olivedrab",
  "Fibroblast lineage" = "lavender",
  "None" = "white",
  "Monocytes" = "peachpuff",
  "Endothelial lineage" = "cadetblue",
  "SMG duct" = "lightpink",
  "Neuroendocrine" = "skyblue",
  "Doublet query/Other" = "#d62728"
)

UMAP displaying clusters at opt_res resolution and Broad cell Labels Level 3.

p1 <- DimPlot(merged_obj, reduction = "umap.harmony", raster = FALSE ,repel = TRUE, label = TRUE,label.size = 3.5, group.by = opt_res) +  NoLegend()

p2 <- DimPlot(merged_obj, reduction = "umap.harmony", raster = FALSE, repel = TRUE, label = TRUE, label.size = 3.5, group.by = "Broad_cell_label_3")  +
  scale_colour_manual(values = my_colors) + 
  ggtitle(paste0(tissue, ": Batch Corrected UMAP")) 


p1 / p2 

Version Author Date
fa7b973 Gunjan Dixit 2024-05-01
320ccbd Gunjan Dixit 2024-05-01
9492583 Gunjan Dixit 2024-04-26

Save batch corrected Object

out1 <- here("output",
            "RDS", "AllBatches_Clustering_SEUs",
             paste0("G000231_Neeland_",tissue,".Clusters.SEU.rds"))
#dir.create(out1)
if (!file.exists(out1)) {
  saveRDS(merged_obj, file = out1)
}

Marker Gene Analysis

merged_obj <- JoinLayers(merged_obj)
paed.markers <- FindAllMarkers(merged_obj, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)

Extracting top 5 genes per cluster for visualization. The ‘top5’ contains the top 5 genes with the highest weighted average avg_log2FC within each cluster and the ‘best.wilcox.gene.per.cluster’ contains the single best gene with the highest weighted average avg_log2FC for each cluster.

paed.markers %>%
    group_by(cluster) %>% unique() %>% 
    top_n(n = 5, wt = avg_log2FC) -> top5

paed.markers %>%
    group_by(cluster) %>% 
    slice_head(n=1) %>% 
    pull(gene) -> best.wilcox.gene.per.cluster

best.wilcox.gene.per.cluster
 [1] "CD3D"     "CD79A"    "EPAS1"    "ALPL"     "TMEM190"  "NKG7"    
 [7] "C20orf85" "SPI1"     "CXCL10"   "FOSB"     "CDC20B"   "CSF3R"   
[13] "CXCL8"    "FRMPD2"   "TK1"      "CD79B"    "LMNB1"    "HBB"     
[19] "CPA3"     "FOXI1"    "LILRA4"   "MLANA"    "CSF3R"    "BEST4"   

Marker gene expression in clusters

This heatmap depicts the expression of top five genes in each cluster.

DoHeatmap(merged_obj, features = top5$gene) + NoLegend()

Version Author Date
320ccbd Gunjan Dixit 2024-05-01

Violin plot shows the expression of top marker gene per cluster.

VlnPlot(merged_obj, features=best.wilcox.gene.per.cluster, ncol = 2, raster = FALSE, pt.size = FALSE)

Version Author Date
320ccbd Gunjan Dixit 2024-05-01

Violin plot shows the expression of top marker gene per cluster and compares its expression in both batches.

plots <- VlnPlot(merged_obj, features = best.wilcox.gene.per.cluster, split.by = "batch_name", group.by = "Broad_cell_label_3",
    pt.size = 0, combine = FALSE, raster = FALSE, split.plot = TRUE)
The default behaviour of split.by has changed.
Separate violin plots are now plotted side-by-side.
To restore the old behaviour of a single split violin,
set split.plot = TRUE.
      
This message will be shown once per session.
wrap_plots(plots = plots, ncol = 1)

Version Author Date
320ccbd Gunjan Dixit 2024-05-01

Feature plot shows the expression of top marker genes per cluster.

FeaturePlot(merged_obj,features=best.wilcox.gene.per.cluster, reduction = 'umap.harmony', raster = FALSE, ncol = 2)

Version Author Date
320ccbd Gunjan Dixit 2024-05-01

Extract markers for each cluster

This section extracts marker genes for each cluster and save them as a CSV file.

out_markers <- here("output",
            "CSV", 
            paste(tissue,"_Marker_gene_clusters.",opt_res, sep = ""))

dir.create(out_markers, recursive = TRUE, showWarnings = FALSE)

for (cl in unique(paed.markers$cluster)) {
  cluster_data <- paed.markers %>% dplyr::filter(cluster == cl)
  file_name <- here(out_markers, paste0("G000231_Neeland_",tissue, "_cluster_", cl, ".csv"))
  write.csv(cluster_data, file = file_name)
}

Updated cell-type labels

cell_labels <- readxl::read_excel(here("data/Cell_labels_Mel/earlyAIR_nasal_brushing_annotations_02.05.24.xlsx"))
new_cluster_names <- cell_labels %>% 
  dplyr::select(cluster, annotation) %>% 
  deframe()

merged_obj <- RenameIdents(merged_obj, new_cluster_names)
merged_obj@meta.data$cell_labels <- Idents(merged_obj)

p3 <- DimPlot(merged_obj, reduction = "umap.harmony", raster = FALSE, repel = TRUE, label = TRUE, label.size = 3.5) + ggtitle(paste0(tissue, ": UMAP with Updated cell types"))

p3

Version Author Date
e0e83af Gunjan Dixit 2024-06-04
merged_obj@meta.data %>%
  ggplot(aes(x = cell_labels, fill = cell_labels)) +
  geom_bar() +
  geom_text(aes(label = ..count..), stat = "count",
            vjust = -0.5, colour = "black", size = 2) +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
  NoLegend() + ggtitle(paste0(tissue, " : Counts per cell-type"))

Version Author Date
e0e83af Gunjan Dixit 2024-06-04

Reclustering of Goblet/Club/Basal cells

The marker genes for this reclustering can be found here-

NB_Basal_population_res.0.1

idx <- which(Idents(merged_obj) %in% "goblet/club/basal cells")
paed_sub <- merged_obj[,idx]
mito_genes <- grep("^MT-", rownames(paed_sub), value = TRUE)
paed_sub <- subset(paed_sub, features = setdiff(rownames(paed_sub), mito_genes))
paed_sub
An object of class Seurat 
17962 features across 19899 samples within 1 assay 
Active assay: RNA (17962 features, 2000 variable features)
 3 layers present: data, counts, scale.data
 4 dimensional reductions calculated: pca, umap.unintegrated, harmony, umap.harmony
paed_sub <- paed_sub %>%
  NormalizeData() %>%
  FindVariableFeatures() %>%
  ScaleData() %>%
  RunPCA() 
  
paed_sub <- RunUMAP(paed_sub, dims = 1:30, reduction = "pca", reduction.name = "umap.new")

meta_data_columns <- colnames(paed_sub@meta.data)
columns_to_remove <- grep("^RNA_snn_res", meta_data_columns, value = TRUE)
paed_sub@meta.data <- paed_sub@meta.data[, !(colnames(paed_sub@meta.data) %in% columns_to_remove)]


resolutions <- seq(0.1, 1, by = 0.1)
paed_sub <- FindNeighbors(paed_sub, reduction = "pca", dims = 1:30)
paed_sub <- FindClusters(paed_sub, resolution = resolutions, algorithm = 3)
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 19899
Number of edges: 690634

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.9405
Number of communities: 6
Elapsed time: 12 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 19899
Number of edges: 690634

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.9184
Number of communities: 9
Elapsed time: 10 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 19899
Number of edges: 690634

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.9058
Number of communities: 12
Elapsed time: 9 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 19899
Number of edges: 690634

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.8963
Number of communities: 16
Elapsed time: 9 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 19899
Number of edges: 690634

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.8878
Number of communities: 16
Elapsed time: 9 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 19899
Number of edges: 690634

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.8795
Number of communities: 18
Elapsed time: 9 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 19899
Number of edges: 690634

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.8723
Number of communities: 21
Elapsed time: 8 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 19899
Number of edges: 690634

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.8664
Number of communities: 23
Elapsed time: 8 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 19899
Number of edges: 690634

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.8605
Number of communities: 24
Elapsed time: 8 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 19899
Number of edges: 690634

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.8550
Number of communities: 25
Elapsed time: 8 seconds
DimHeatmap(paed_sub, dims = 1:10, cells = 500, balanced = TRUE)

Version Author Date
e0e83af Gunjan Dixit 2024-06-04
clustree(paed_sub, prefix = "RNA_snn_res.")

Version Author Date
db794c0 Gunjan Dixit 2024-06-13
opt_res <- "RNA_snn_res.0.1"  
n <- nlevels(paed_sub$RNA_snn_res.0.1)
paed_sub$RNA_snn_res.0.1 <- factor(paed_sub$RNA_snn_res.0.1, levels = seq(0,n-1))
paed_sub$seurat_clusters <- NULL
Idents(paed_sub) <- paed_sub$RNA_snn_res.0.1
DimPlot(paed_sub, reduction = "umap.new", group.by = opt_res, label = TRUE, label.size = 4.5, repel = TRUE, raster = FALSE )

Version Author Date
db794c0 Gunjan Dixit 2024-06-13
e0e83af Gunjan Dixit 2024-06-04
9492583 Gunjan Dixit 2024-04-26
paed_sub.markers <- FindAllMarkers(paed_sub, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
Calculating cluster 0
Calculating cluster 1
Calculating cluster 2
Calculating cluster 3
Calculating cluster 4
Calculating cluster 5
paed_sub.markers %>%
    group_by(cluster) %>% unique() %>% 
    top_n(n = 5, wt = avg_log2FC) -> top5

paed_sub.markers %>%
    group_by(cluster) %>% 
    slice_head(n=1) %>% 
    pull(gene) -> best.wilcox.gene.per.cluster

best.wilcox.gene.per.cluster
[1] "ADAM28"    "SPNS2"     "FOSB"      "TTC9"      "SLC34A2"   "TMPRSS11E"
FeaturePlot(paed_sub,features=best.wilcox.gene.per.cluster, reduction = 'umap.new', raster = FALSE, label = T, ncol = 2)

Version Author Date
db794c0 Gunjan Dixit 2024-06-13
out_markers <- here("output",
            "CSV", 
            paste(tissue,"_Marker_genes_Reclustered_Basal_population.",opt_res, sep = ""))

dir.create(out_markers, recursive = TRUE, showWarnings = FALSE)

for (cl in unique(paed_sub.markers$cluster)) {
  cluster_data <- paed_sub.markers %>% dplyr::filter(cluster == cl)
  file_name <- here(out_markers, paste0("G000231_Neeland_",tissue, "_cluster_", cl, ".csv"))
  write.csv(cluster_data, file = file_name)
}

Expression of known marker genes

Goblet cells (Bronchial, Nasal and subsegmental)

LYPD2 and PSCA are specific to Nasal. BPIFB1, C16orf89 and NPDC1 are specific to subsegmental.

known_markers <- c("FXYD3","EPCAM", "ELF3", "IGFBP2", "SERPINF1", "TSPAN1", "GPX8", "ALDH1A3", "CEACAM5", "LYPD2", "PSCA", "BPIFB1", "C16orf89", "NPDC1")
FeaturePlot(paed_sub,features=known_markers, reduction = 'umap.new', raster = FALSE, label = T, ncol = 3)

Version Author Date
db794c0 Gunjan Dixit 2024-06-13
e0e83af Gunjan Dixit 2024-06-04

Club cells

club_markers <- c("SERPINB3", "TCN1", "ASRGL1")
FeaturePlot(paed_sub,features=club_markers, reduction = 'umap.new', raster = FALSE, label = T, ncol = 2)

Version Author Date
db794c0 Gunjan Dixit 2024-06-13

Basal cells

Note: These markers are only specific to Basal

basal_markers <- c("KRT15", "KRT17", "TP63")
FeaturePlot(paed_sub,features=basal_markers, reduction = 'umap.new', raster = FALSE, label = T, ncol = 2)

Version Author Date
db794c0 Gunjan Dixit 2024-06-13
e0e83af Gunjan Dixit 2024-06-04

Azimuth Labels

## Finest level
DimPlot(paed_sub, reduction = "umap.new", group.by = "predicted.ann_finest_level", raster = FALSE, repel = TRUE, label = TRUE, label.size = 3.5) 

Version Author Date
db794c0 Gunjan Dixit 2024-06-13
e0e83af Gunjan Dixit 2024-06-04
df_table <- as.data.frame(table(paed_sub$RNA_snn_res.0.1, paed_sub$predicted.ann_finest_level))
ggplot(df_table, aes(Var1, Freq, fill = Var2)) +
  geom_bar(stat = "identity") +
  labs(x = "RNA_snn_res.0.1", y = "Count", fill = "predicted ann_finest_level") +
  theme_minimal() +
  ggtitle("Stacked Bar Plot of basal/club/goblet (res=0.1) and predicted.ann_finest_level")

Version Author Date
db794c0 Gunjan Dixit 2024-06-13
## Predicted_Level 5
DimPlot(paed_sub, reduction = "umap.new", group.by = "predicted.ann_level_5", raster = FALSE, repel = TRUE, label = TRUE, label.size = 3.5) 

Version Author Date
db794c0 Gunjan Dixit 2024-06-13
df_table <- as.data.frame(table(paed_sub$RNA_snn_res.0.1, paed_sub$predicted.ann_level_5))

ggplot(df_table, aes(Var1, Freq, fill = Var2)) +
  geom_bar(stat = "identity") +
  labs(x = "RNA_snn_res.0.1", y = "Count", fill = "predicted ann_level_5") +
  theme_minimal() +
  ggtitle("Stacked Bar Plot of basal/club/goblet (res=0.1) and predicted.ann_level5")

Version Author Date
db794c0 Gunjan Dixit 2024-06-13

Reclustering T cell population

This includes CD4 T cell, CD8 T cell, NK cell, NK-T cell, proliferating or cycling T/NK cell.

The marker genes for this reclustering can be found here-

NB_Tcell_population_res.0.4

idx <- which(Idents(merged_obj) %in% c("CD4 T cells", "CD8 T cells", "NK-T cells", "proliferating T/NK"))
paed_sub <- merged_obj[,idx]
mito_genes <- grep("^MT-", rownames(paed_sub), value = TRUE)
paed_sub <- subset(paed_sub, features = setdiff(rownames(paed_sub), mito_genes))
paed_sub
An object of class Seurat 
17962 features across 21491 samples within 1 assay 
Active assay: RNA (17962 features, 2000 variable features)
 3 layers present: data, counts, scale.data
 4 dimensional reductions calculated: pca, umap.unintegrated, harmony, umap.harmony
paed_sub <- paed_sub %>%
  NormalizeData() %>%
  FindVariableFeatures() %>%
  ScaleData() %>%
  RunPCA() 
  
paed_sub <- RunUMAP(paed_sub, dims = 1:30, reduction = "pca", reduction.name = "umap.new")

meta_data_columns <- colnames(paed_sub@meta.data)
columns_to_remove <- grep("^RNA_snn_res", meta_data_columns, value = TRUE)
paed_sub@meta.data <- paed_sub@meta.data[, !(colnames(paed_sub@meta.data) %in% columns_to_remove)]


resolutions <- seq(0.1, 1, by = 0.1)
paed_sub <- FindNeighbors(paed_sub, reduction = "pca", dims = 1:30)
paed_sub <- FindClusters(paed_sub, resolution = resolutions, algorithm = 3)
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 21491
Number of edges: 703338

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.9444
Number of communities: 6
Elapsed time: 16 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 21491
Number of edges: 703338

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.9168
Number of communities: 8
Elapsed time: 13 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 21491
Number of edges: 703338

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.9021
Number of communities: 11
Elapsed time: 12 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 21491
Number of edges: 703338

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.8894
Number of communities: 13
Elapsed time: 11 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 21491
Number of edges: 703338

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.8772
Number of communities: 14
Elapsed time: 11 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 21491
Number of edges: 703338

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.8676
Number of communities: 17
Elapsed time: 11 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 21491
Number of edges: 703338

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.8589
Number of communities: 17
Elapsed time: 10 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 21491
Number of edges: 703338

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.8509
Number of communities: 19
Elapsed time: 10 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 21491
Number of edges: 703338

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.8430
Number of communities: 20
Elapsed time: 10 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 21491
Number of edges: 703338

Running smart local moving algorithm...
Maximum modularity in 10 random starts: 0.8360
Number of communities: 21
Elapsed time: 10 seconds
DimHeatmap(paed_sub, dims = 1:10, cells = 500, balanced = TRUE)

Version Author Date
c20f60f Gunjan Dixit 2024-07-08
db794c0 Gunjan Dixit 2024-06-13
clustree(paed_sub, prefix = "RNA_snn_res.")

Version Author Date
c20f60f Gunjan Dixit 2024-07-08
db794c0 Gunjan Dixit 2024-06-13
opt_res <- "RNA_snn_res.0.4"  
n <- nlevels(paed_sub$RNA_snn_res.0.4)
paed_sub$RNA_snn_res.0.4 <- factor(paed_sub$RNA_snn_res.0.4, levels = seq(0,n-1))
paed_sub$seurat_clusters <- NULL
Idents(paed_sub) <- paed_sub$RNA_snn_res.0.4
DimPlot(paed_sub, reduction = "umap.new", group.by = "RNA_snn_res.0.4", label = TRUE, label.size = 4.5, repel = TRUE, raster = FALSE )

Version Author Date
c20f60f Gunjan Dixit 2024-07-08
db794c0 Gunjan Dixit 2024-06-13
paed_sub.markers <- FindAllMarkers(paed_sub, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
Calculating cluster 0
Calculating cluster 1
Calculating cluster 2
Calculating cluster 3
Calculating cluster 4
Calculating cluster 5
Calculating cluster 6
Calculating cluster 7
Calculating cluster 8
Calculating cluster 9
Calculating cluster 10
Calculating cluster 11
paed_sub.markers %>%
    group_by(cluster) %>% unique() %>% 
    top_n(n = 5, wt = avg_log2FC) -> top5

paed_sub.markers %>%
    group_by(cluster) %>% 
    slice_head(n=1) %>% 
    pull(gene) -> best.wilcox.gene.per.cluster

best.wilcox.gene.per.cluster
 [1] "CD8A"  "CSF1"  "CD4"   "TCF7"  "IFI6"  "MAF"   "NR4A2" "ITGAX" "TYMS" 
[10] "GZMK"  "KLF2"  "CD79A"
FeaturePlot(paed_sub,features=best.wilcox.gene.per.cluster, reduction = 'umap.new', raster = FALSE, label = T, ncol = 3)

Version Author Date
c20f60f Gunjan Dixit 2024-07-08

Top 10 marker genes from Seurat

## Seurat top markers
top10 <- paed_sub.markers %>%
    group_by(cluster) %>%
    top_n(n = 10, wt = avg_log2FC) %>%
    ungroup() %>%
    distinct(gene, .keep_all = TRUE) %>%
    arrange(cluster, desc(avg_log2FC))

cluster_colors <- paletteer::paletteer_d("pals::glasbey")[factor(top10$cluster)]

DotPlot(paed_sub,    
        features = unique(top10$gene),
        group.by = opt_res,
        cols = c("azure1", "blueviolet"),
        dot.scale = 3, assay = "RNA") +
    RotatedAxis() +
    FontSize(y.text = 8, x.text = 12) +
    labs(y = element_blank(), x = element_blank()) +
    coord_flip() +
    theme(axis.text.y = element_text(color = cluster_colors)) +
    ggtitle("Top 10 marker genes per cluster (Seurat)")
Warning: Vectorized input to `element_text()` is not officially supported.
ℹ Results may be unexpected or may change in future versions of ggplot2.

Version Author Date
c20f60f Gunjan Dixit 2024-07-08
db794c0 Gunjan Dixit 2024-06-13
out_markers <- here("output",
            "CSV", 
            paste(tissue,"_Marker_genes_Reclustered_Tcell_population.",opt_res, sep = ""))

dir.create(out_markers, recursive = TRUE, showWarnings = FALSE)

for (cl in unique(paed_sub.markers$cluster)) {
  cluster_data <- paed_sub.markers %>% dplyr::filter(cluster == cl)
  file_name <- here(out_markers, paste0("G000231_Neeland_",tissue, "_cluster_", cl, ".csv"))
  write.csv(cluster_data, file = file_name)
}

Update T cell subclustering labels

cell_labels <- readxl::read_excel(here("data/Cell_labels_Mel_v2/earlyAIR_NB_BB_BAL_T-NK_annotations_16.07.24.xlsx"), sheet = "NB")
new_cluster_names <- cell_labels %>% 
  dplyr::select(cluster, annotation) %>% 
  deframe()

paed_sub <- RenameIdents(paed_sub, new_cluster_names)
paed_sub@meta.data$cell_labels_v2 <- Idents(paed_sub)

DimPlot(paed_sub, reduction = "umap.new", raster = FALSE, repel = TRUE, label = TRUE, label.size = 3.5) + ggtitle(paste0(tissue, ": UMAP with Updated subclustering"))

Version Author Date
c20f60f Gunjan Dixit 2024-07-08

Excluding contaminating labels

idx <- which(grepl("^contaminating", Idents(paed_sub)))
paed_clean <- paed_sub[, -idx]
DimPlot(paed_clean, reduction = "umap.new", raster = FALSE, repel = TRUE, label = TRUE, label.size = 3.5) + ggtitle(paste0(tissue, ":Updated subclustering (clean)"))

paed_clean <- paed_clean %>%
NormalizeData() %>%
FindVariableFeatures() %>%
ScaleData() %>%
RunPCA()
Normalizing layer: counts
Finding variable features for layer counts
Centering and scaling data matrix
Warning: Different features in new layer data than already exists for
scale.data
PC_ 1 
Positive:  TYMS, UHRF1, KIFC1, MKI67, RRM2, MYBL2, HIST1H1B, STMN1, ZWINT, TOP2A 
       TK1, BIRC5, FOXM1, HJURP, CDT1, CDK1, AURKB, E2F2, CDCA5, HIST1H2BH 
       ASF1B, SPC24, ESPL1, PKMYT1, TPX2, DLGAP5, ANLN, DTL, E2F1, NCAPG 
Negative:  TCF7, LTB, IL7R, TXNIP, CD300A, KLF2, PLAC8, PTGDR, LEF1, TXK 
       TSC22D3, SATB1, FOS, FCRL3, ITGAX, MAL, DTX1, FCMR, ITGAM, SORL1 
       RASGRP2, CHST2, CCR7, GAS7, CNR2, RASA3, SOCS3, BACH2, DUSP2, TRDC 
PC_ 2 
Positive:  CD300A, FCER1G, ITGAX, TYROBP, GNLY, PLAC8, SH2D1B, KLRF1, KLF2, FGR 
       IRF8, DUSP2, ITGAM, NCAM1, AREG, TCF7, FOSL2, TXK, GAS7, CTSW 
       SELL, PTGDR, FCGR3A, TNFRSF18, S1PR5, TRDC, FOS, SAMD3, NCR1, LITAF 
Negative:  CXCR6, CCR5, TRBC2, ALOX5AP, ITGA1, JUN, RORA, S100A4, CCR6, ST8SIA1 
       COL5A1, MAF, IL26, GZMA, TOX2, CD4, B3GALT2, CSF1, SCUBE1, CXCL13 
       LAG3, PDCD1, SLAMF1, ADAM19, RORC, CD5, CTSH, KLRB1, IL17A, NMUR1 
PC_ 3 
Positive:  NKG7, GZMA, HOPX, PRF1, GNLY, GZMB, KLRC1, KLRD1, ITGA1, KLRC4 
       ZNF683, NMUR1, PIK3AP1, FASLG, KLRC3, CTSW, CSF1, CLNK, IL2RB, CXCR6 
       FCRL6, KIR2DL4, ENTPD1, NCR1, GZMH, ATP8B4, CCL4, SCUBE1, ALOX5AP, ADGRG1 
Negative:  CD4, LTB, CD28, MAF, IL7R, SPOCK2, CD40LG, TCF7, CXCR5, IL6R 
       ICOS, CCR7, CD5, CCR4, CD27, KLF2, GPR183, SATB1, SELL, TBC1D4 
       TNFRSF25, FCMR, CTLA4, CXCR4, ACTN1, LEF1, SOCS3, RASGRP2, TNFRSF4, MAL 
PC_ 4 
Positive:  IFI6, LAG3, IFI44L, ISG15, GZMB, MX1, IFI44, OAS3, OAS1, TYMP 
       CMPK2, CXCR6, RSAD2, TNFAIP3, RGS1, IFIT1, XAF1, NR4A2, IRF7, PRDM1 
       FOSL2, ISG20, TNFRSF1B, CD69, SRGN, PRF1, ZFP36, USP18, TENT5C, SOCS1 
Negative:  TCF7, ITGAX, PTGDR, LEF1, CD300A, FCRL3, KLRC4, IGHM, ZNF683, ITGAM 
       TRDC, KLRC3, CNR2, FGR, FCRL6, TXK, GAS7, PLAC8, CXXC5, ID3 
       RIPOR2, MATK, SPRY2, KLRF1, MAL, SAMD3, ACTN1, TXNIP, DYSF, CHST2 
PC_ 5 
Positive:  EGR2, EGR3, NR4A1, NR4A3, NR4A2, ZFP36L1, TNFRSF9, EGR1, NFKBID, CRTAM 
       NAB2, TNFRSF18, KDM6B, CCL4L2, DUSP2, TIGIT, PHLDA1, ID3, CTLA4, IL21 
       XCL2, SRGN, CCL4, TOX2, KRT86, SPRY2, TNFRSF4, CCL3, ATP8B4, CSF1 
Negative:  IFI44L, IFI6, CMPK2, OAS3, ISG15, RSAD2, OAS1, IFIT1, MX1, XAF1 
       IFI44, MX2, LY6E, OAS2, USP18, GBP1, IFIT2, ISG20, IRF7, IFIT3 
       SAMD9L, KLF2, STAT1, GIMAP4, HERC5, MT2A, TMSB10, TYMP, RASGRP2, CX3CR1 
paed_clean <- RunUMAP(paed_clean, dims = 1:30, reduction = "pca", reduction.name = "umap.clean")
12:27:31 UMAP embedding parameters a = 0.9922 b = 1.112
Found more than one class "dist" in cache; using the first, from namespace 'spam'
Also defined by 'BiocGenerics'
12:27:31 Read 21032 rows and found 30 numeric columns
12:27:31 Using Annoy for neighbor search, n_neighbors = 30
Found more than one class "dist" in cache; using the first, from namespace 'spam'
Also defined by 'BiocGenerics'
12:27:31 Building Annoy index with metric = cosine, n_trees = 50
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
12:27:32 Writing NN index file to temp file /var/folders/q8/kw1r78g12qn793xm7g0zvk94x2bh70/T//Rtmp6JQpFt/file150670157b63
12:27:32 Searching Annoy index using 1 thread, search_k = 3000
12:27:36 Annoy recall = 100%
12:27:36 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
12:27:37 Initializing from normalized Laplacian + noise (using RSpectra)
12:27:38 Commencing optimization for 200 epochs, with 922708 positive edges
12:27:44 Optimization finished
DimPlot(paed_clean, reduction = "umap.clean", group.by = "cell_labels_v2",raster = FALSE, repel = TRUE, label = TRUE, label.size = 4.5) + ggtitle(paste0(tissue, ": Updated subclustering (clean)"))

Exploring Unknown cluster (cluster 17)

file <- here("output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c17.csv")

data <- read_csv(file) %>%
    arrange(PValue) %>%  
    slice_head(n = 30)   

cluster <- gsub(".*limma-c(\\d+)\\.csv", "Cluster \\1", basename(file))

p <- ggplot(data, aes(x = reorder(Pathway, -log10(PValue)), y = -log10(PValue), size = NGenes, color = Direction)) +
    geom_point(alpha = 0.7) +
    coord_flip() +
    scale_color_manual(values = c(Up = "green3", Down = "red3")) + 
    labs(title = cluster, x = NULL, y = "-log10(P-value)", size = "Number of Genes", color = "Direction") +
    theme_minimal() +
    theme(axis.text.y = element_text(size = 8), plot.title = element_text(hjust = 0.5))
  
p

Session Info

sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.3.2 (2023-10-31)
 os       macOS Sonoma 14.5
 system   aarch64, darwin20
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       Australia/Melbourne
 date     2024-07-26
 pandoc   3.1.1 @ /Users/dixitgunjan/Desktop/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 package              * version    date (UTC) lib source
 abind                  1.4-5      2016-07-21 [1] CRAN (R 4.3.0)
 AnnotationDbi        * 1.64.1     2023-11-02 [1] Bioconductor
 backports              1.4.1      2021-12-13 [1] CRAN (R 4.3.0)
 beeswarm               0.4.0      2021-06-01 [1] CRAN (R 4.3.0)
 Biobase              * 2.62.0     2023-10-26 [1] Bioconductor
 BiocGenerics         * 0.48.1     2023-11-02 [1] Bioconductor
 BiocManager            1.30.22    2023-08-08 [1] CRAN (R 4.3.0)
 BiocStyle            * 2.30.0     2023-10-26 [1] Bioconductor
 Biostrings             2.70.2     2024-01-30 [1] Bioconductor 3.18 (R 4.3.2)
 bit                    4.0.5      2022-11-15 [1] CRAN (R 4.3.0)
 bit64                  4.0.5      2020-08-30 [1] CRAN (R 4.3.0)
 bitops                 1.0-7      2021-04-24 [1] CRAN (R 4.3.0)
 blob                   1.2.4      2023-03-17 [1] CRAN (R 4.3.0)
 bslib                  0.6.1      2023-11-28 [1] CRAN (R 4.3.1)
 cachem                 1.0.8      2023-05-01 [1] CRAN (R 4.3.0)
 callr                  3.7.5      2024-02-19 [1] CRAN (R 4.3.1)
 cellranger             1.1.0      2016-07-27 [1] CRAN (R 4.3.0)
 checkmate              2.3.1      2023-12-04 [1] CRAN (R 4.3.1)
 cli                    3.6.2      2023-12-11 [1] CRAN (R 4.3.1)
 cluster                2.1.6      2023-12-01 [1] CRAN (R 4.3.1)
 clustree             * 0.5.1      2023-11-05 [1] CRAN (R 4.3.1)
 codetools              0.2-19     2023-02-01 [1] CRAN (R 4.3.2)
 colorspace             2.1-0      2023-01-23 [1] CRAN (R 4.3.0)
 cowplot                1.1.3      2024-01-22 [1] CRAN (R 4.3.1)
 crayon                 1.5.2      2022-09-29 [1] CRAN (R 4.3.0)
 data.table           * 1.15.0     2024-01-30 [1] CRAN (R 4.3.1)
 DBI                    1.2.2      2024-02-16 [1] CRAN (R 4.3.1)
 DelayedArray           0.28.0     2023-11-06 [1] Bioconductor
 deldir                 2.0-2      2023-11-23 [1] CRAN (R 4.3.1)
 digest                 0.6.34     2024-01-11 [1] CRAN (R 4.3.1)
 dotCall64              1.1-1      2023-11-28 [1] CRAN (R 4.3.1)
 dplyr                * 1.1.4      2023-11-17 [1] CRAN (R 4.3.1)
 edgeR                * 4.0.16     2024-02-20 [1] Bioconductor 3.18 (R 4.3.2)
 ellipsis               0.3.2      2021-04-29 [1] CRAN (R 4.3.0)
 evaluate               0.23       2023-11-01 [1] CRAN (R 4.3.1)
 fansi                  1.0.6      2023-12-08 [1] CRAN (R 4.3.1)
 farver                 2.1.1      2022-07-06 [1] CRAN (R 4.3.0)
 fastDummies            1.7.3      2023-07-06 [1] CRAN (R 4.3.0)
 fastmap                1.1.1      2023-02-24 [1] CRAN (R 4.3.0)
 fitdistrplus           1.1-11     2023-04-25 [1] CRAN (R 4.3.0)
 forcats              * 1.0.0      2023-01-29 [1] CRAN (R 4.3.0)
 fs                     1.6.3      2023-07-20 [1] CRAN (R 4.3.0)
 future                 1.33.1     2023-12-22 [1] CRAN (R 4.3.1)
 future.apply           1.11.1     2023-12-21 [1] CRAN (R 4.3.1)
 generics               0.1.3      2022-07-05 [1] CRAN (R 4.3.0)
 GenomeInfoDb           1.38.6     2024-02-10 [1] Bioconductor 3.18 (R 4.3.2)
 GenomeInfoDbData       1.2.11     2024-02-27 [1] Bioconductor
 GenomicRanges          1.54.1     2023-10-30 [1] Bioconductor
 getPass                0.2-4      2023-12-10 [1] CRAN (R 4.3.1)
 ggbeeswarm             0.7.2      2023-04-29 [1] CRAN (R 4.3.0)
 ggforce                0.4.2      2024-02-19 [1] CRAN (R 4.3.1)
 ggplot2              * 3.5.0      2024-02-23 [1] CRAN (R 4.3.1)
 ggraph               * 2.1.0      2022-10-09 [1] CRAN (R 4.3.0)
 ggrastr                1.0.2      2023-06-01 [1] CRAN (R 4.3.0)
 ggrepel                0.9.5      2024-01-10 [1] CRAN (R 4.3.1)
 ggridges               0.5.6      2024-01-23 [1] CRAN (R 4.3.1)
 git2r                  0.33.0     2023-11-26 [1] CRAN (R 4.3.1)
 globals                0.16.2     2022-11-21 [1] CRAN (R 4.3.0)
 glue                 * 1.7.0      2024-01-09 [1] CRAN (R 4.3.1)
 goftest                1.2-3      2021-10-07 [1] CRAN (R 4.3.0)
 graphlayouts           1.1.0      2024-01-19 [1] CRAN (R 4.3.1)
 gridExtra              2.3        2017-09-09 [1] CRAN (R 4.3.0)
 gtable                 0.3.4      2023-08-21 [1] CRAN (R 4.3.0)
 here                 * 1.0.1      2020-12-13 [1] CRAN (R 4.3.0)
 highr                  0.10       2022-12-22 [1] CRAN (R 4.3.0)
 hms                    1.1.3      2023-03-21 [1] CRAN (R 4.3.0)
 htmltools              0.5.7      2023-11-03 [1] CRAN (R 4.3.1)
 htmlwidgets            1.6.4      2023-12-06 [1] CRAN (R 4.3.1)
 httpuv                 1.6.14     2024-01-26 [1] CRAN (R 4.3.1)
 httr                   1.4.7      2023-08-15 [1] CRAN (R 4.3.0)
 ica                    1.0-3      2022-07-08 [1] CRAN (R 4.3.0)
 igraph                 2.0.2      2024-02-17 [1] CRAN (R 4.3.1)
 IRanges              * 2.36.0     2023-10-26 [1] Bioconductor
 irlba                  2.3.5.1    2022-10-03 [1] CRAN (R 4.3.2)
 jquerylib              0.1.4      2021-04-26 [1] CRAN (R 4.3.0)
 jsonlite               1.8.8      2023-12-04 [1] CRAN (R 4.3.1)
 kableExtra           * 1.4.0      2024-01-24 [1] CRAN (R 4.3.1)
 KEGGREST               1.42.0     2023-10-26 [1] Bioconductor
 KernSmooth             2.23-22    2023-07-10 [1] CRAN (R 4.3.2)
 knitr                  1.45       2023-10-30 [1] CRAN (R 4.3.1)
 labeling               0.4.3      2023-08-29 [1] CRAN (R 4.3.0)
 later                  1.3.2      2023-12-06 [1] CRAN (R 4.3.1)
 lattice                0.22-5     2023-10-24 [1] CRAN (R 4.3.1)
 lazyeval               0.2.2      2019-03-15 [1] CRAN (R 4.3.0)
 leiden                 0.4.3.1    2023-11-17 [1] CRAN (R 4.3.1)
 lifecycle              1.0.4      2023-11-07 [1] CRAN (R 4.3.1)
 limma                * 3.58.1     2023-11-02 [1] Bioconductor
 listenv                0.9.1      2024-01-29 [1] CRAN (R 4.3.1)
 lmtest                 0.9-40     2022-03-21 [1] CRAN (R 4.3.0)
 locfit                 1.5-9.8    2023-06-11 [1] CRAN (R 4.3.0)
 lubridate            * 1.9.3      2023-09-27 [1] CRAN (R 4.3.1)
 magrittr               2.0.3      2022-03-30 [1] CRAN (R 4.3.0)
 MASS                   7.3-60.0.1 2024-01-13 [1] CRAN (R 4.3.1)
 Matrix                 1.6-5      2024-01-11 [1] CRAN (R 4.3.1)
 MatrixGenerics         1.14.0     2023-10-26 [1] Bioconductor
 matrixStats            1.2.0      2023-12-11 [1] CRAN (R 4.3.1)
 memoise                2.0.1      2021-11-26 [1] CRAN (R 4.3.0)
 mime                   0.12       2021-09-28 [1] CRAN (R 4.3.0)
 miniUI                 0.1.1.1    2018-05-18 [1] CRAN (R 4.3.0)
 munsell                0.5.0      2018-06-12 [1] CRAN (R 4.3.0)
 nlme                   3.1-164    2023-11-27 [1] CRAN (R 4.3.1)
 org.Hs.eg.db         * 3.18.0     2024-02-27 [1] Bioconductor
 paletteer              1.6.0      2024-01-21 [1] CRAN (R 4.3.1)
 parallelly             1.37.0     2024-02-14 [1] CRAN (R 4.3.1)
 patchwork            * 1.2.0      2024-01-08 [1] CRAN (R 4.3.1)
 pbapply                1.7-2      2023-06-27 [1] CRAN (R 4.3.0)
 pillar                 1.9.0      2023-03-22 [1] CRAN (R 4.3.0)
 pkgconfig              2.0.3      2019-09-22 [1] CRAN (R 4.3.0)
 plotly                 4.10.4     2024-01-13 [1] CRAN (R 4.3.1)
 plyr                   1.8.9      2023-10-02 [1] CRAN (R 4.3.1)
 png                    0.1-8      2022-11-29 [1] CRAN (R 4.3.0)
 polyclip               1.10-6     2023-09-27 [1] CRAN (R 4.3.1)
 presto                 1.0.0      2024-02-27 [1] Github (immunogenomics/presto@31dc97f)
 prismatic              1.1.1      2022-08-15 [1] CRAN (R 4.3.0)
 processx               3.8.3      2023-12-10 [1] CRAN (R 4.3.1)
 progressr              0.14.0     2023-08-10 [1] CRAN (R 4.3.0)
 promises               1.2.1      2023-08-10 [1] CRAN (R 4.3.0)
 ps                     1.7.6      2024-01-18 [1] CRAN (R 4.3.1)
 purrr                * 1.0.2      2023-08-10 [1] CRAN (R 4.3.0)
 R6                     2.5.1      2021-08-19 [1] CRAN (R 4.3.0)
 RANN                   2.6.1      2019-01-08 [1] CRAN (R 4.3.0)
 RColorBrewer         * 1.1-3      2022-04-03 [1] CRAN (R 4.3.0)
 Rcpp                   1.0.12     2024-01-09 [1] CRAN (R 4.3.1)
 RcppAnnoy              0.0.22     2024-01-23 [1] CRAN (R 4.3.1)
 RcppHNSW               0.6.0      2024-02-04 [1] CRAN (R 4.3.1)
 RCurl                  1.98-1.14  2024-01-09 [1] CRAN (R 4.3.1)
 readr                * 2.1.5      2024-01-10 [1] CRAN (R 4.3.1)
 readxl               * 1.4.3      2023-07-06 [1] CRAN (R 4.3.0)
 rematch2               2.1.2      2020-05-01 [1] CRAN (R 4.3.0)
 reshape2               1.4.4      2020-04-09 [1] CRAN (R 4.3.0)
 reticulate             1.35.0     2024-01-31 [1] CRAN (R 4.3.1)
 rlang                  1.1.3      2024-01-10 [1] CRAN (R 4.3.1)
 rmarkdown              2.25       2023-09-18 [1] CRAN (R 4.3.1)
 ROCR                   1.0-11     2020-05-02 [1] CRAN (R 4.3.0)
 rprojroot              2.0.4      2023-11-05 [1] CRAN (R 4.3.1)
 RSpectra               0.16-1     2022-04-24 [1] CRAN (R 4.3.0)
 RSQLite                2.3.5      2024-01-21 [1] CRAN (R 4.3.1)
 rstudioapi             0.15.0     2023-07-07 [1] CRAN (R 4.3.0)
 Rtsne                  0.17       2023-12-07 [1] CRAN (R 4.3.1)
 S4Arrays               1.2.0      2023-10-26 [1] Bioconductor
 S4Vectors            * 0.40.2     2023-11-25 [1] Bioconductor 3.18 (R 4.3.2)
 sass                   0.4.8      2023-12-06 [1] CRAN (R 4.3.1)
 scales                 1.3.0      2023-11-28 [1] CRAN (R 4.3.1)
 scattermore            1.2        2023-06-12 [1] CRAN (R 4.3.0)
 sctransform            0.4.1      2023-10-19 [1] CRAN (R 4.3.1)
 sessioninfo            1.2.2      2021-12-06 [1] CRAN (R 4.3.0)
 Seurat               * 5.0.1.9009 2024-02-28 [1] Github (satijalab/seurat@6a3ef5e)
 SeuratObject         * 5.0.1      2023-11-17 [1] CRAN (R 4.3.1)
 shiny                  1.8.0      2023-11-17 [1] CRAN (R 4.3.1)
 SingleCellExperiment   1.24.0     2023-11-06 [1] Bioconductor
 sp                   * 2.1-3      2024-01-30 [1] CRAN (R 4.3.1)
 spam                   2.10-0     2023-10-23 [1] CRAN (R 4.3.1)
 SparseArray            1.2.4      2024-02-10 [1] Bioconductor 3.18 (R 4.3.2)
 spatstat.data          3.0-4      2024-01-15 [1] CRAN (R 4.3.1)
 spatstat.explore       3.2-6      2024-02-01 [1] CRAN (R 4.3.1)
 spatstat.geom          3.2-8      2024-01-26 [1] CRAN (R 4.3.1)
 spatstat.random        3.2-2      2023-11-29 [1] CRAN (R 4.3.1)
 spatstat.sparse        3.0-3      2023-10-24 [1] CRAN (R 4.3.1)
 spatstat.utils         3.0-4      2023-10-24 [1] CRAN (R 4.3.1)
 speckle              * 1.2.0      2023-10-26 [1] Bioconductor
 statmod                1.5.0      2023-01-06 [1] CRAN (R 4.3.0)
 stringi                1.8.3      2023-12-11 [1] CRAN (R 4.3.1)
 stringr              * 1.5.1      2023-11-14 [1] CRAN (R 4.3.1)
 SummarizedExperiment   1.32.0     2023-11-06 [1] Bioconductor
 survival               3.5-8      2024-02-14 [1] CRAN (R 4.3.1)
 svglite                2.1.3      2023-12-08 [1] CRAN (R 4.3.1)
 systemfonts            1.0.5      2023-10-09 [1] CRAN (R 4.3.1)
 tensor                 1.5        2012-05-05 [1] CRAN (R 4.3.0)
 tibble               * 3.2.1      2023-03-20 [1] CRAN (R 4.3.0)
 tidygraph              1.3.1      2024-01-30 [1] CRAN (R 4.3.1)
 tidyr                * 1.3.1      2024-01-24 [1] CRAN (R 4.3.1)
 tidyselect             1.2.0      2022-10-10 [1] CRAN (R 4.3.0)
 tidyverse            * 2.0.0      2023-02-22 [1] CRAN (R 4.3.0)
 timechange             0.3.0      2024-01-18 [1] CRAN (R 4.3.1)
 tweenr                 2.0.3      2024-02-26 [1] CRAN (R 4.3.1)
 tzdb                   0.4.0      2023-05-12 [1] CRAN (R 4.3.0)
 utf8                   1.2.4      2023-10-22 [1] CRAN (R 4.3.1)
 uwot                   0.1.16     2023-06-29 [1] CRAN (R 4.3.0)
 vctrs                  0.6.5      2023-12-01 [1] CRAN (R 4.3.1)
 vipor                  0.4.7      2023-12-18 [1] CRAN (R 4.3.1)
 viridis                0.6.5      2024-01-29 [1] CRAN (R 4.3.1)
 viridisLite            0.4.2      2023-05-02 [1] CRAN (R 4.3.0)
 vroom                  1.6.5      2023-12-05 [1] CRAN (R 4.3.1)
 whisker                0.4.1      2022-12-05 [1] CRAN (R 4.3.0)
 withr                  3.0.0      2024-01-16 [1] CRAN (R 4.3.1)
 workflowr            * 1.7.1      2023-08-23 [1] CRAN (R 4.3.0)
 xfun                   0.42       2024-02-08 [1] CRAN (R 4.3.1)
 xml2                   1.3.6      2023-12-04 [1] CRAN (R 4.3.1)
 xtable                 1.8-4      2019-04-21 [1] CRAN (R 4.3.0)
 XVector                0.42.0     2023-10-26 [1] Bioconductor
 yaml                   2.3.8      2023-12-11 [1] CRAN (R 4.3.1)
 zlibbioc               1.48.0     2023-10-26 [1] Bioconductor
 zoo                    1.8-12     2023-04-13 [1] CRAN (R 4.3.0)

 [1] /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library

──────────────────────────────────────────────────────────────────────────────

sessionInfo()
R version 4.3.2 (2023-10-31)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.5

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Australia/Melbourne
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] readxl_1.4.3         org.Hs.eg.db_3.18.0  AnnotationDbi_1.64.1
 [4] IRanges_2.36.0       S4Vectors_0.40.2     Biobase_2.62.0      
 [7] BiocGenerics_0.48.1  speckle_1.2.0        edgeR_4.0.16        
[10] limma_3.58.1         patchwork_1.2.0      data.table_1.15.0   
[13] RColorBrewer_1.1-3   kableExtra_1.4.0     clustree_0.5.1      
[16] ggraph_2.1.0         Seurat_5.0.1.9009    SeuratObject_5.0.1  
[19] sp_2.1-3             glue_1.7.0           here_1.0.1          
[22] lubridate_1.9.3      forcats_1.0.0        stringr_1.5.1       
[25] dplyr_1.1.4          purrr_1.0.2          readr_2.1.5         
[28] tidyr_1.3.1          tibble_3.2.1         ggplot2_3.5.0       
[31] tidyverse_2.0.0      BiocStyle_2.30.0     workflowr_1.7.1     

loaded via a namespace (and not attached):
  [1] fs_1.6.3                    matrixStats_1.2.0          
  [3] spatstat.sparse_3.0-3       bitops_1.0-7               
  [5] httr_1.4.7                  tools_4.3.2                
  [7] sctransform_0.4.1           backports_1.4.1            
  [9] utf8_1.2.4                  R6_2.5.1                   
 [11] lazyeval_0.2.2              uwot_0.1.16                
 [13] withr_3.0.0                 gridExtra_2.3              
 [15] progressr_0.14.0            cli_3.6.2                  
 [17] spatstat.explore_3.2-6      fastDummies_1.7.3          
 [19] prismatic_1.1.1             labeling_0.4.3             
 [21] sass_0.4.8                  spatstat.data_3.0-4        
 [23] ggridges_0.5.6              pbapply_1.7-2              
 [25] systemfonts_1.0.5           svglite_2.1.3              
 [27] sessioninfo_1.2.2           parallelly_1.37.0          
 [29] rstudioapi_0.15.0           RSQLite_2.3.5              
 [31] generics_0.1.3              vroom_1.6.5                
 [33] ica_1.0-3                   spatstat.random_3.2-2      
 [35] Matrix_1.6-5                ggbeeswarm_0.7.2           
 [37] fansi_1.0.6                 abind_1.4-5                
 [39] lifecycle_1.0.4             whisker_0.4.1              
 [41] yaml_2.3.8                  SummarizedExperiment_1.32.0
 [43] SparseArray_1.2.4           Rtsne_0.17                 
 [45] paletteer_1.6.0             grid_4.3.2                 
 [47] blob_1.2.4                  promises_1.2.1             
 [49] crayon_1.5.2                miniUI_0.1.1.1             
 [51] lattice_0.22-5              cowplot_1.1.3              
 [53] KEGGREST_1.42.0             pillar_1.9.0               
 [55] knitr_1.45                  GenomicRanges_1.54.1       
 [57] future.apply_1.11.1         codetools_0.2-19           
 [59] leiden_0.4.3.1              getPass_0.2-4              
 [61] vctrs_0.6.5                 png_0.1-8                  
 [63] spam_2.10-0                 cellranger_1.1.0           
 [65] gtable_0.3.4                rematch2_2.1.2             
 [67] cachem_1.0.8                xfun_0.42                  
 [69] S4Arrays_1.2.0              mime_0.12                  
 [71] tidygraph_1.3.1             survival_3.5-8             
 [73] SingleCellExperiment_1.24.0 statmod_1.5.0              
 [75] ellipsis_0.3.2              fitdistrplus_1.1-11        
 [77] ROCR_1.0-11                 nlme_3.1-164               
 [79] bit64_4.0.5                 RcppAnnoy_0.0.22           
 [81] GenomeInfoDb_1.38.6         rprojroot_2.0.4            
 [83] bslib_0.6.1                 irlba_2.3.5.1              
 [85] vipor_0.4.7                 KernSmooth_2.23-22         
 [87] colorspace_2.1-0            DBI_1.2.2                  
 [89] ggrastr_1.0.2               tidyselect_1.2.0           
 [91] processx_3.8.3              bit_4.0.5                  
 [93] compiler_4.3.2              git2r_0.33.0               
 [95] xml2_1.3.6                  DelayedArray_0.28.0        
 [97] plotly_4.10.4               checkmate_2.3.1            
 [99] scales_1.3.0                lmtest_0.9-40              
[101] callr_3.7.5                 digest_0.6.34              
[103] goftest_1.2-3               spatstat.utils_3.0-4       
[105] presto_1.0.0                rmarkdown_2.25             
[107] XVector_0.42.0              htmltools_0.5.7            
[109] pkgconfig_2.0.3             MatrixGenerics_1.14.0      
[111] highr_0.10                  fastmap_1.1.1              
[113] rlang_1.1.3                 htmlwidgets_1.6.4          
[115] shiny_1.8.0                 farver_2.1.1               
[117] jquerylib_0.1.4             zoo_1.8-12                 
[119] jsonlite_1.8.8              RCurl_1.98-1.14            
[121] magrittr_2.0.3              GenomeInfoDbData_1.2.11    
[123] dotCall64_1.1-1             munsell_0.5.0              
[125] Rcpp_1.0.12                 viridis_0.6.5              
[127] reticulate_1.35.0           stringi_1.8.3              
[129] zlibbioc_1.48.0             MASS_7.3-60.0.1            
[131] plyr_1.8.9                  parallel_4.3.2             
[133] listenv_0.9.1               ggrepel_0.9.5              
[135] deldir_2.0-2                Biostrings_2.70.2          
[137] graphlayouts_1.1.0          splines_4.3.2              
[139] tensor_1.5                  hms_1.1.3                  
[141] locfit_1.5-9.8              ps_1.7.6                   
[143] igraph_2.0.2                spatstat.geom_3.2-8        
[145] RcppHNSW_0.6.0              reshape2_1.4.4             
[147] evaluate_0.23               BiocManager_1.30.22        
[149] tzdb_0.4.0                  tweenr_2.0.3               
[151] httpuv_1.6.14               RANN_2.6.1                 
[153] polyclip_1.10-6             future_1.33.1              
[155] scattermore_1.2             ggforce_0.4.2              
[157] xtable_1.8-4                RSpectra_0.16-1            
[159] later_1.3.2                 viridisLite_0.4.2          
[161] beeswarm_0.4.0              memoise_2.0.1              
[163] cluster_2.1.6               timechange_0.3.0           
[165] globals_0.16.2