Last updated: 2024-11-11
Checks: 6 1
Knit directory: paed-airway-allTissues/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown is untracked by Git. To know which version of the R
Markdown file created these results, you’ll want to first commit it to
the Git repo. If you’re still working on the analysis, you can ignore
this warning. When you’re finished, you can run
wflow_publish
to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20230811)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version cd2a05c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .RData
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: data/.DS_Store
Ignored: data/RDS/
Ignored: output/.DS_Store
Ignored: output/CSV/.DS_Store
Ignored: output/G000231_Neeland_batch1/
Ignored: output/G000231_Neeland_batch2_1/
Ignored: output/G000231_Neeland_batch2_2/
Ignored: output/G000231_Neeland_batch3/
Ignored: output/G000231_Neeland_batch4/
Ignored: output/G000231_Neeland_batch5/
Ignored: output/G000231_Neeland_batch9_1/
Ignored: output/RDS/
Ignored: output/plots/
Untracked files:
Untracked: Annotation_Bronchial_brushings.Rmd
Untracked: BAL_Tcell_propeller.xlsx
Untracked: BAL_propeller.xlsx
Untracked: BB_Tcell_propeller.xlsx
Untracked: BB_propeller.xlsx
Untracked: NB_Tcell_propeller.xlsx
Untracked: NB_propeller.csv
Untracked: NB_propeller.xlsx
Untracked: analysis/03_Batch_Integration.Rmd
Untracked: analysis/Age_proportions.Rmd
Untracked: analysis/Age_proportions_AllBatches.Rmd
Untracked: analysis/Annotation_BAL.Rmd
Untracked: analysis/Annotation_Nasal_brushings.Rmd
Untracked: analysis/Batch_Integration_&_Downstream_analysis.Rmd
Untracked: analysis/Batch_correction_&_Downstream.Rmd
Untracked: analysis/Cell_cycle_regression.Rmd
Untracked: analysis/Master_metadata.Rmd
Untracked: analysis/Preprocessing_Batch1_Nasal_brushings.Rmd
Untracked: analysis/Preprocessing_Batch2_Tonsils.Rmd
Untracked: analysis/Preprocessing_Batch3_Adenoids.Rmd
Untracked: analysis/Preprocessing_Batch4_Bronchial_brushings.Rmd
Untracked: analysis/Preprocessing_Batch5_Nasal_brushings.Rmd
Untracked: analysis/Preprocessing_Batch6_BAL.Rmd
Untracked: analysis/Preprocessing_Batch7_Bronchial_brushings.Rmd
Untracked: analysis/Preprocessing_Batch8_Adenoids.Rmd
Untracked: analysis/Preprocessing_Batch9_Tonsils.Rmd
Untracked: analysis/TonsilsVsAdenoids.Rmd
Untracked: analysis/boxplot_proportions_Adenoids.pdf
Untracked: analysis/boxplot_proportions_BAL.pdf
Untracked: analysis/boxplot_proportions_Bronchial_brushings.pdf
Untracked: analysis/boxplot_proportions_Nasal_brushings.pdf
Untracked: analysis/boxplot_proportions_Tonsils.pdf
Untracked: analysis/cell_cycle_regression.R
Untracked: analysis/test.Rmd
Untracked: analysis/testing_age_all.Rmd
Untracked: color_palette.rds
Untracked: color_palette_Oct_2024.rds
Untracked: color_palette_v2_level2.rds
Untracked: combined_metadata.rds
Untracked: data/Cell_labels_Mel/
Untracked: data/Cell_labels_Mel_v2/
Untracked: data/Cell_labels_Mel_v3/
Untracked: data/Cell_labels_modified_Gunjan/
Untracked: data/Hs.c2.cp.reactome.v7.1.entrez.rds
Untracked: data/Raw_feature_bc_matrix/
Untracked: data/celltypes_Mel_GD_v3.xlsx
Untracked: data/celltypes_Mel_GD_v4_no_dups.xlsx
Untracked: data/celltypes_Mel_modified.xlsx
Untracked: data/celltypes_Mel_v2.csv
Untracked: data/celltypes_Mel_v2.xlsx
Untracked: data/celltypes_Mel_v2_MN.xlsx
Untracked: data/celltypes_for_mel_MN.xlsx
Untracked: data/earlyAIR_sample_sheets_combined.xlsx
Untracked: output/CSV/All_tissues.propeller.xlsx
Untracked: output/CSV/Bronchial_brushings/
Untracked: output/CSV/Bronchial_brushings_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/
Untracked: output/CSV/G000231_Neeland_Adenoids.propeller.xlsx
Untracked: output/CSV/G000231_Neeland_Bronchial_brushings.propeller.xlsx
Untracked: output/CSV/G000231_Neeland_Nasal_brushings.propeller.xlsx
Untracked: output/CSV/G000231_Neeland_Tonsils.propeller.xlsx
Untracked: output/CSV/Nasal_brushings/
Unstaged changes:
Deleted: 02_QC_exploratoryPlots.Rmd
Deleted: 02_QC_exploratoryPlots.html
Modified: analysis/00_AllBatches_overview.Rmd
Modified: analysis/01_QC_emptyDrops.Rmd
Modified: analysis/02_QC_exploratoryPlots.Rmd
Modified: analysis/Adenoids.Rmd
Modified: analysis/Age_modeling.Rmd
Modified: analysis/Age_modelling_Adenoids.Rmd
Modified: analysis/AllBatches_QCExploratory.Rmd
Modified: analysis/BAL.Rmd
Modified: analysis/Bronchial_brushings.Rmd
Modified: analysis/Nasal_brushings.Rmd
Modified: analysis/Subclustering_Adenoids.Rmd
Modified: analysis/Subclustering_BAL.Rmd
Modified: analysis/Subclustering_Bronchial_brushings.Rmd
Modified: analysis/Subclustering_Nasal_brushings.Rmd
Modified: analysis/Subclustering_Tonsils.Rmd
Modified: analysis/Tonsils.Rmd
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c0.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c1.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c10.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c11.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c12.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c13.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c14.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c15.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c16.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c17.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c2.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c3.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c4.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c5.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c6.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c7.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c8.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c9.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c0.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c1.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c10.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c11.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c12.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c13.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c14.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c15.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c16.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c17.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c2.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c3.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c4.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c5.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c6.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c7.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c8.csv
Modified: output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c9.csv
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/Preprocessing_Batch1_Nasal_brushings.Rmd
) and
HTML (docs/Preprocessing_Batch1_Nasal_brushings.html
)
files. If you’ve configured a remote Git repository (see
?wflow_git_remote
), click on the hyperlinks in the table
below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | c20f60f | Gunjan Dixit | 2024-07-08 | Updated marker gene dot plots |
html | bd5ec04 | Gunjan Dixit | 2024-05-03 | Modified index |
This RMarkdown performs quality control for the earlyAIR batch- Nasal_brushings- Batch1
The steps are: * Load CellRanger counts
* Run decontX to
determine contamination and correct
* Filter cells with low library
size and high mitochondrial counts
* Identify doublets
*
Scale, Normalize, Run PCA, UMAP, Azimuth annotation before/after doublet
removal
* Save Seurat object
suppressPackageStartupMessages({
library(BiocStyle)
library(BiocParallel)
library(tidyverse)
library(here)
library(glue)
library(scran)
library(scater)
library(scuttle)
library(janitor)
library(cowplot)
library(patchwork)
library(scales)
library(Homo.sapiens)
library(msigdbr)
library(EnsDb.Hsapiens.v86)
library(ensembldb)
library(readr)
library(Seurat)
library(celda)
library(decontX)
library(Azimuth)
library(Matrix)
library(scDblFinder)
library(scMerge)
library(googlesheets4)
library(lubridate)
library(ggstats)
})
set.seed(42)
batch_path <- here("output/RDS/AllBatches_filtered_SCEs/G000231_batch1_Nasal_brushings.CellRanger_filtered.SCE.rds")
batch_info <- str_match(basename(batch_path), "^(G\\d+_batch\\d+)_([A-Za-z_]+)\\.CellRanger_filtered\\.SCE\\.rds$")
batch_name <- batch_info[, 2]
tissue <- batch_info[, 3]
sce <- readRDS(batch_path)
sce$tissue <- tissue
sce$batch_name <- batch_name
sce
class: SingleCellExperiment
dim: 18082 43290
metadata(0):
assays(2): counts logcounts
rownames(18082): SAMD11 NOC2L ... MT-ND6 MT-CYB
rowData names(0):
colnames(43290): AAACCAATCATGAGGTACTTTAGG-1 AAACCAGGTGTCCAATACTTTAGG-1
... TTTGCTGAGATTGAGCATTCGGTT-1 TTTGGCGGTAAGGTTGATTCGGTT-1
colData names(7): orig.ident nCount_RNA ... tissue batch_name
reducedDimNames(0):
mainExpName: RNA
altExpNames(0):
Filter cells with zero counts across all genes
sce <- sce[rowSums(counts(sce)) > 0, ]
sce
class: SingleCellExperiment
dim: 17474 43290
metadata(0):
assays(2): counts logcounts
rownames(17474): SAMD11 NOC2L ... MT-ND6 MT-CYB
rowData names(0):
colnames(43290): AAACCAATCATGAGGTACTTTAGG-1 AAACCAGGTGTCCAATACTTTAGG-1
... TTTGCTGAGATTGAGCATTCGGTT-1 TTTGGCGGTAAGGTTGATTCGGTT-1
colData names(7): orig.ident nCount_RNA ... tissue batch_name
reducedDimNames(0):
mainExpName: RNA
altExpNames(0):
cell_counts <- c()
cell_counts["Post CellRanger Filtering"] <- ncol(sce)
The first 17 characters of the barcodes are the GEM barcode and the last 9 characters are the sample barcode. Create a metadata feature for each of these.
sce$Barcode <- unname(substring(colnames(sce), first = 1, last = 26))
sce$GEM_barcode <- substring(sce$Barcode, first = 1, last = 17)
sce$sample_barcode <- substring(sce$Barcode, first = 18, last = 26)
Correcting for ambient RNA with decontX, actually replacing the raw counts with the decontX counts. These can be forced to be integers rather than doubles later if necessary, but so far it doesn’t seem to be an issue.
sce <- decontX(sce)
--------------------------------------------------
Starting DecontX
--------------------------------------------------
Mon Nov 11 15:26:58 2024 .. Analyzing all cells
Mon Nov 11 15:26:58 2024 .... Generating UMAP and estimating cell types
Found more than one class "dist" in cache; using the first, from namespace 'BiocGenerics'
Also defined by 'spam'
Found more than one class "dist" in cache; using the first, from namespace 'BiocGenerics'
Also defined by 'spam'
Found more than one class "dist" in cache; using the first, from namespace 'BiocGenerics'
Also defined by 'spam'
Mon Nov 11 15:28:07 2024 .... Estimating contamination
Mon Nov 11 15:28:14 2024 ...... Completed iteration: 10 | converge: 0.03919
Mon Nov 11 15:28:19 2024 ...... Completed iteration: 20 | converge: 0.01257
Mon Nov 11 15:28:25 2024 ...... Completed iteration: 30 | converge: 0.009682
Mon Nov 11 15:28:31 2024 ...... Completed iteration: 40 | converge: 0.004789
Mon Nov 11 15:28:37 2024 ...... Completed iteration: 50 | converge: 0.003704
Mon Nov 11 15:28:43 2024 ...... Completed iteration: 60 | converge: 0.002934
Mon Nov 11 15:28:49 2024 ...... Completed iteration: 70 | converge: 0.002333
Mon Nov 11 15:28:55 2024 ...... Completed iteration: 80 | converge: 0.001852
Mon Nov 11 15:29:00 2024 ...... Completed iteration: 90 | converge: 0.005455
Mon Nov 11 15:29:06 2024 ...... Completed iteration: 100 | converge: 0.0021
Mon Nov 11 15:29:12 2024 ...... Completed iteration: 110 | converge: 0.001555
Mon Nov 11 15:29:18 2024 ...... Completed iteration: 120 | converge: 0.0017
Mon Nov 11 15:29:24 2024 ...... Completed iteration: 130 | converge: 0.001892
Mon Nov 11 15:29:29 2024 ...... Completed iteration: 140 | converge: 0.002202
Mon Nov 11 15:29:35 2024 ...... Completed iteration: 150 | converge: 0.002567
Mon Nov 11 15:29:41 2024 ...... Completed iteration: 160 | converge: 0.002954
Mon Nov 11 15:29:47 2024 ...... Completed iteration: 170 | converge: 0.003292
Mon Nov 11 15:29:53 2024 ...... Completed iteration: 180 | converge: 0.003486
Mon Nov 11 15:29:59 2024 ...... Completed iteration: 190 | converge: 0.003451
Mon Nov 11 15:30:04 2024 ...... Completed iteration: 200 | converge: 0.003361
Mon Nov 11 15:30:10 2024 ...... Completed iteration: 210 | converge: 0.003045
Mon Nov 11 15:30:16 2024 ...... Completed iteration: 220 | converge: 0.0025
Mon Nov 11 15:30:22 2024 ...... Completed iteration: 230 | converge: 0.001937
Mon Nov 11 15:30:28 2024 ...... Completed iteration: 240 | converge: 0.001478
Mon Nov 11 15:30:34 2024 ...... Completed iteration: 250 | converge: 0.00108
Mon Nov 11 15:30:39 2024 ...... Completed iteration: 260 | converge: 0.0009566
Mon Nov 11 15:30:39 2024 .. Calculating final decontaminated matrix
--------------------------------------------------
Completed DecontX. Total time: 3.809982 mins
--------------------------------------------------
assay(sce, "raw_counts") <- counts(sce)
counts(sce) <- decontXcounts(sce)
Filter on library size filter after running decontX
sce <- addPerCellQCMetrics(sce)
sum(sce$sum < 250)
[1] 1986
sce <- sce[, sce$sum >= 250]
cell_counts["Post low-lib Filtering"] <- ncol(sce)
Filtering out cells with high mitochondrial content.
is.mito <- grepl(pattern = "^MT", rownames(sce))
sce <- addPerCellQCMetrics(sce, subsets = list(mito = is.mito))
mito_outliers <- isOutlier(sce$subsets_mito_percent, type = "higher")
sum(mito_outliers)
[1] 6626
sce <- sce[, !mito_outliers]
cell_counts["Post Mito Filtering"] <- ncol(sce)
We know that there will be some unidentified multiplets in our data, as higher-occupancy GEMs have many ways to include multiple cells from the same samples. Still working on a way to estimate the number of these but the existing doublet-finding tools work ok. Using scDblFinder as that seemed to have the best effect on the GEM-level counts.
sce <- logNormCounts(sce) %>%
runPCA() %>%
runUMAP()
Found more than one class "dist" in cache; using the first, from namespace 'BiocGenerics'
Also defined by 'spam'
Found more than one class "dist" in cache; using the first, from namespace 'BiocGenerics'
Also defined by 'spam'
Found more than one class "dist" in cache; using the first, from namespace 'BiocGenerics'
Also defined by 'spam'
Run scDblFinder
bp <- MulticoreParam(8, RNGseed=56213)
#sce <- scDblFinder(sce, clusters = T,BPPARAM=bp)
params <- list(
dbr = list(clusters = TRUE, BPPARAM = bp, dbr.sd = 1),
dbr_s = list(clusters = TRUE, BPPARAM = bp, dbr.sd = 1, samples = sce$sample_barcode),
s = list(clusters = TRUE, BPPARAM = bp, samples = sce$sample_barcode),
cl = list(clusters = TRUE, BPPARAM = bp)
)
# Run scDblFinder for each parameter set, rename columns, and merge results
for (suffix in names(params)) {
sce_temp <- do.call(scDblFinder, c(list(sce), params[[suffix]]))
# Loop through the relevant columns and rename them with the suffix
for (colname in c("cluster", "class", "originAmbiguous", "mostLikelyOrigin",
"cxds_score", "difficulty", "weighted", "score")) {
sce[[paste0("scDblFinder.", colname, "_", suffix)]] <- sce_temp[[paste0("scDblFinder.", colname)]]
}
}
Warning in (function (sce, clusters = NULL, samples = NULL, clustCor = NULL, :
You are trying to run scDblFinder on a very large number of cells. If these are
from different captures, please specify this using the `samples` argument.TRUE
Clustering cells...
16 clusters
Creating ~25000 artificial doublets...
Dimensional reduction
Evaluating kNN...
Training model...
iter=0, 2771 cells excluded from training.
iter=1, 2834 cells excluded from training.
iter=2, 2805 cells excluded from training.
Threshold found:0.403
3079 (8.9%) doublets called
Warning in (function (sce, clusters = NULL, samples = NULL, clustCor = NULL, :
You are trying to run scDblFinder on a very large number of cells. If these are
from different captures, please specify this using the `samples` argument.TRUE
Clustering cells...
16 clusters
Creating ~25000 artificial doublets...
Dimensional reduction
Evaluating kNN...
Training model...
iter=0, 6029 cells excluded from training.
iter=1, 6055 cells excluded from training.
iter=2, 5840 cells excluded from training.
Threshold found:0.244
6013 (17.3%) doublets called
table(sce$scDblFinder.class_dbr)
singlet doublet
31599 3079
table(sce$scDblFinder.class_dbr_s)
singlet doublet
32417 2261
table(sce$scDblFinder.class_s)
singlet doublet
32957 1721
table(sce$scDblFinder.class_cl)
singlet doublet
28665 6013
Make Seurat object
seu <- CreateSeuratObject(counts(sce), meta.data = as.data.frame(colData(sce)))
seu$cells_per_GEM <- table(seu$GEM_barcode)[seu$GEM_barcode]
table(seu$cells_per_GEM)
1 2 3 4
16275 12106 4953 1344
seu <- NormalizeData(seu, verbose = F) %>%
FindVariableFeatures(nfeatures = 2000, verbose = F) %>%
ScaleData(verbose = F) %>%
RunPCA(dims = 1:30, verbose = F) %>%
RunUMAP(dims = 1:30, verbose = F)
Found more than one class "dist" in cache; using the first, from namespace 'BiocGenerics'
Also defined by 'spam'
Found more than one class "dist" in cache; using the first, from namespace 'BiocGenerics'
Also defined by 'spam'
options(timeout = max(1000000, getOption("timeout")))
tmp <- RunAzimuth(seu, reference = "lungref")
detected inputs from HUMAN with id type Gene.name
reference rownames detected HUMAN with id type Gene.name
Normalizing query using reference SCT model
Projecting cell embeddings
Finding query neighbors
Finding neighborhoods
Finding anchors
Found 26809 anchors
Finding integration vectors
Finding integration vector weights
Predicting cell labels
Predicting cell labels
Predicting cell labels
Predicting cell labels
Predicting cell labels
Predicting cell labels
Integrating dataset 2 with reference dataset
Finding integration vectors
Integrating data
Computing nearest neighbors
Running UMAP projection
16:27:45 Read 34678 rows
16:27:45 Processing block 1 of 1
16:27:45 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 20
16:27:46 Initializing by weighted average of neighbor coordinates using 1 thread
16:27:46 Commencing optimization for 67 epochs, with 693560 positive edges
16:27:48 Finished
Projecting reference PCA onto query
Finding integration vector weights
Projecting back the query cells into original PCA space
Finding integration vector weights
Computing scores:
Finding neighbors of original query cells
Finding neighbors of transformed query cells
Computing query SNN
Determining bandwidth and computing transition probabilities
Total elapsed time: 15.759418964386
seu@meta.data <- tmp@meta.data
out <- here("output",
"RDS", "AllBatches_scDblFinder_test_SEUs",
paste0(batch_name, "_", tissue, ".CellRanger.decontX.mito.filter.Azimuth.SEU.rds"))
saveRDS(seu, file = out)
f <- c("https://docs.google.com/spreadsheets/d/1FKo-7MweuFDoKBm8DMFcMOuq0LyK_K6GVNAAo_n-ItE/edit#gid=1882418352")
dat <- bind_rows(lapply(1:10, function(sheet) read_sheet(ss = f, sheet = sheet)))
dat
batch_meta <- dat %>%
dplyr::filter(run == "batch1_1")
#batch_meta$sample_id <- gsub("_", "-", batch_meta$sample_id) #For Batch7
seu$sample_id <- sapply(seu$Sample, function(x) batch_meta$sample_id[batch_meta$donor_id == x])
seu$donor_id <- sapply(seu$Sample, function(x) batch_meta$donor_id[batch_meta$donor_id == x])
seu$sex <- sapply(seu$Sample, function(x) batch_meta$sex[batch_meta$donor_id == x])
seu$age_years <- sapply(seu$Sample, function(x) batch_meta$age_years[batch_meta$donor_id == x])
seu@meta.data <- seu@meta.data %>%
dplyr::select(c(donor_id, sample_id, age_years, sex, nCount_RNA, nFeature_RNA,
Barcode, GEM_barcode, sample_barcode,
tissue, batch_name, sum, detected,
cells_per_GEM,
scDblFinder.class, scDblFinder.score,
predicted.ann_level_1, predicted.ann_level_1.score, predicted.ann_level_2, predicted.ann_level_2.score, predicted.ann_level_3, predicted.ann_level_3.score, predicted.ann_level_4, predicted.ann_level_4.score, predicted.ann_level_5, predicted.ann_level_5.score, predicted.ann_finest_level, predicted.ann_finest_level.score))
out <- here("output",
"RDS", "AllBatches_Azimuth_SEUs",
paste0(batch_name, "_", tissue, ".CellRanger.decontX.mito.filter.Azimuth.SEU.rds"))
saveRDS(seu, file = out)
seu <- seu[, seu$scDblFinder.class == "singlet"]
cell_counts["Post Doublet Filtering"] <- ncol(sce)
seu <- NormalizeData(seu, verbose = F) %>%
FindVariableFeatures(nfeatures = 2000, verbose = F) %>%
ScaleData(verbose = F) %>%
RunPCA(dims = 1:30, verbose = F) %>%
RunUMAP(dims = 1:30, verbose = F)
options(timeout = max(1000000, getOption("timeout")))
tmp <- RunAzimuth(seu, reference = "lungref")
seu@meta.data <- tmp@meta.data
this figure shows number of cells eliminated at each filtering stage-
counts_df <- data.frame(
Stage = factor(names(cell_counts), levels = c("Post CellRanger Filtering", "Post low-lib Filtering","Post Mito Filtering", "Post Doublet Filtering")),
Cell_Count = as.numeric(cell_counts)
)
a <- ggplot(counts_df, aes(x = Stage, y = Cell_Count, group = 1)) +
geom_line() +
geom_point() +
theme_minimal() +
labs(title = paste0(tissue, " ", batch_name, " :Cell Counts After Each Preprocessing Step"))
#ggsave(a, file=paste0(tissue, " ", batch_name, " :Cells_after_filtering.pdf"), width = 10)
a
# Function to map cell types to broad cell label
map_to_broad_cell_label <- function(cell_type, broad_cell_labels_df, label_column) {
label <- broad_cell_labels_df[[label_column]][broad_cell_labels_df$`Cell Types` == cell_type]
if (length(label) == 0) {
return("Unknown") # Assign to "Unknown" if not found in mapping
} else {
return(label)
}
}
broad_cell_labels <- readxl::read_excel(here("data/celltypes_Mel_v2_MN.xlsx")) #modified cell types based on Tonsils ref v2
seu$Broad_cell_label_1 <- sapply(seu$predicted.ann_level_4, map_to_broad_cell_label, broad_cell_labels_df = broad_cell_labels, label_column = "Broad cell label level 1")
# Apply mapping to Seurat object for Broad Cell Label 2
seu$Broad_cell_label_2 <- sapply(seu$predicted.ann_level_4, map_to_broad_cell_label, broad_cell_labels_df = broad_cell_labels, label_column = "Broad cell label level 2")
# Apply mapping to Seurat object for Broad Cell Label 3
seu$Broad_cell_label_3 <- sapply(seu$predicted.ann_level_4, map_to_broad_cell_label, broad_cell_labels_df = broad_cell_labels, label_column = "Broad cell label level 3")
table(seu$Broad_cell_label_2 == "Unknown")
table(seu$Broad_cell_label_2 == "NA")
out <- here("output",
"RDS", "AllBatches_Azimuth_noDoublets_SEUs",
paste0(batch_name, "_", tissue, ".CellRanger.decontX.mito.doublet.filter.Azimuth.SEU.rds"))
saveRDS(seu, file = out)
sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.3.2 (2023-10-31)
os macOS 15.0.1
system aarch64, darwin20
ui X11
language (EN)
collate en_US.UTF-8
ctype en_US.UTF-8
tz Australia/Melbourne
date 2024-11-11
pandoc 3.1.1 @ /Users/dixitgunjan/Desktop/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
abind 1.4-5 2016-07-21 [1] CRAN (R 4.3.0)
annotate 1.80.0 2023-10-26 [1] Bioconductor
AnnotationDbi * 1.64.1 2023-11-02 [1] Bioconductor
AnnotationFilter * 1.26.0 2023-10-26 [1] Bioconductor
Azimuth * 0.5.0 2024-02-27 [1] Github (satijalab/azimuth@c3ad1bc)
babelgene 22.9 2022-09-29 [1] CRAN (R 4.3.0)
backports 1.4.1 2021-12-13 [1] CRAN (R 4.3.0)
base64enc 0.1-3 2015-07-28 [1] CRAN (R 4.3.0)
batchelor 1.18.1 2023-12-30 [1] Bioconductor 3.18 (R 4.3.2)
bbmle 1.0.25.1 2023-12-09 [1] CRAN (R 4.3.1)
bdsmatrix 1.3-6 2022-06-03 [1] CRAN (R 4.3.0)
beachmat 2.18.1 2024-02-17 [1] Bioconductor 3.18 (R 4.3.2)
beeswarm 0.4.0 2021-06-01 [1] CRAN (R 4.3.0)
Biobase * 2.62.0 2023-10-26 [1] Bioconductor
BiocFileCache 2.10.1 2023-10-26 [1] Bioconductor
BiocGenerics * 0.48.1 2023-11-02 [1] Bioconductor
BiocIO 1.12.0 2023-10-26 [1] Bioconductor
BiocManager 1.30.22 2023-08-08 [1] CRAN (R 4.3.0)
BiocNeighbors 1.20.2 2024-01-13 [1] Bioconductor 3.18 (R 4.3.2)
BiocParallel * 1.36.0 2023-10-26 [1] Bioconductor
BiocSingular 1.18.0 2023-11-06 [1] Bioconductor
BiocStyle * 2.30.0 2023-10-26 [1] Bioconductor
biomaRt 2.58.2 2024-02-03 [1] Bioconductor 3.18 (R 4.3.2)
Biostrings 2.70.2 2024-01-30 [1] Bioconductor 3.18 (R 4.3.2)
bit 4.0.5 2022-11-15 [1] CRAN (R 4.3.0)
bit64 4.0.5 2020-08-30 [1] CRAN (R 4.3.0)
bitops 1.0-7 2021-04-24 [1] CRAN (R 4.3.0)
blob 1.2.4 2023-03-17 [1] CRAN (R 4.3.0)
bluster 1.12.0 2023-12-19 [1] Bioconductor 3.18 (R 4.3.2)
BSgenome 1.70.2 2024-02-10 [1] Bioconductor 3.18 (R 4.3.2)
BSgenome.Hsapiens.UCSC.hg38 1.4.5 2024-02-27 [1] Bioconductor
bslib 0.6.1 2023-11-28 [1] CRAN (R 4.3.1)
cachem 1.0.8 2023-05-01 [1] CRAN (R 4.3.0)
caTools 1.18.2 2021-03-28 [1] CRAN (R 4.3.0)
celda * 1.18.1 2023-12-23 [1] Bioconductor 3.18 (R 4.3.2)
cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.3.0)
checkmate 2.3.1 2023-12-04 [1] CRAN (R 4.3.1)
cli 3.6.2 2023-12-11 [1] CRAN (R 4.3.1)
cluster 2.1.6 2023-12-01 [1] CRAN (R 4.3.1)
CNEr 1.38.0 2023-10-24 [1] Bioconductor
codetools 0.2-19 2023-02-01 [1] CRAN (R 4.3.2)
colorspace 2.1-0 2023-01-23 [1] CRAN (R 4.3.0)
combinat 0.0-8 2012-10-29 [1] CRAN (R 4.3.0)
cowplot * 1.1.3 2024-01-22 [1] CRAN (R 4.3.1)
crayon 1.5.2 2022-09-29 [1] CRAN (R 4.3.0)
curl 5.2.0 2023-12-08 [1] CRAN (R 4.3.1)
cvTools 0.3.2 2012-05-14 [1] CRAN (R 4.3.0)
data.table 1.15.0 2024-01-30 [1] CRAN (R 4.3.1)
DBI 1.2.2 2024-02-16 [1] CRAN (R 4.3.1)
dbplyr 2.4.0 2023-10-26 [1] CRAN (R 4.3.1)
dbscan 1.1-12 2023-11-28 [1] CRAN (R 4.3.1)
decontX * 1.0.0 2023-12-23 [1] Bioconductor 3.18 (R 4.3.2)
DelayedArray 0.28.0 2023-11-06 [1] Bioconductor
DelayedMatrixStats 1.24.0 2023-11-06 [1] Bioconductor
deldir 2.0-2 2023-11-23 [1] CRAN (R 4.3.1)
densEstBayes 1.0-2.2 2023-03-31 [1] CRAN (R 4.3.0)
DEoptimR 1.1-3 2023-10-07 [1] CRAN (R 4.3.1)
digest 0.6.34 2024-01-11 [1] CRAN (R 4.3.1)
DirichletMultinomial 1.44.0 2023-10-26 [1] Bioconductor
distr 2.9.3 2024-01-29 [1] CRAN (R 4.3.1)
doParallel 1.0.17 2022-02-07 [1] CRAN (R 4.3.0)
dotCall64 1.1-1 2023-11-28 [1] CRAN (R 4.3.1)
dplyr * 1.1.4 2023-11-17 [1] CRAN (R 4.3.1)
dqrng 0.3.2 2023-11-29 [1] CRAN (R 4.3.1)
DT 0.32 2024-02-19 [1] CRAN (R 4.3.1)
edgeR 4.0.16 2024-02-20 [1] Bioconductor 3.18 (R 4.3.2)
ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.3.0)
enrichR 3.2 2023-04-14 [1] CRAN (R 4.3.0)
EnsDb.Hsapiens.v86 * 2.99.0 2024-02-27 [1] Bioconductor
ensembldb * 2.26.0 2023-10-26 [1] Bioconductor
evaluate 0.23 2023-11-01 [1] CRAN (R 4.3.1)
fansi 1.0.6 2023-12-08 [1] CRAN (R 4.3.1)
fastDummies 1.7.3 2023-07-06 [1] CRAN (R 4.3.0)
fastmap 1.1.1 2023-02-24 [1] CRAN (R 4.3.0)
fastmatch 1.1-4 2023-08-18 [1] CRAN (R 4.3.0)
filelock 1.0.3 2023-12-11 [1] CRAN (R 4.3.1)
fitdistrplus 1.1-11 2023-04-25 [1] CRAN (R 4.3.0)
forcats * 1.0.0 2023-01-29 [1] CRAN (R 4.3.0)
foreach 1.5.2 2022-02-02 [1] CRAN (R 4.3.0)
foreign 0.8-86 2023-11-28 [1] CRAN (R 4.3.1)
Formula 1.2-5 2023-02-24 [1] CRAN (R 4.3.0)
fs 1.6.3 2023-07-20 [1] CRAN (R 4.3.0)
future 1.33.1 2023-12-22 [1] CRAN (R 4.3.1)
future.apply 1.11.1 2023-12-21 [1] CRAN (R 4.3.1)
gargle 1.5.2 2023-07-20 [1] CRAN (R 4.3.0)
generics 0.1.3 2022-07-05 [1] CRAN (R 4.3.0)
GenomeInfoDb * 1.38.6 2024-02-10 [1] Bioconductor 3.18 (R 4.3.2)
GenomeInfoDbData 1.2.11 2024-02-27 [1] Bioconductor
GenomicAlignments 1.38.2 2024-01-20 [1] Bioconductor 3.18 (R 4.3.2)
GenomicFeatures * 1.54.3 2024-02-03 [1] Bioconductor 3.18 (R 4.3.2)
GenomicRanges * 1.54.1 2023-10-30 [1] Bioconductor
ggbeeswarm 0.7.2 2023-04-29 [1] CRAN (R 4.3.0)
ggplot2 * 3.5.0 2024-02-23 [1] CRAN (R 4.3.1)
ggrepel 0.9.5 2024-01-10 [1] CRAN (R 4.3.1)
ggridges 0.5.6 2024-01-23 [1] CRAN (R 4.3.1)
ggstats * 0.5.1 2023-11-21 [1] CRAN (R 4.3.1)
git2r 0.33.0 2023-11-26 [1] CRAN (R 4.3.1)
globals 0.16.2 2022-11-21 [1] CRAN (R 4.3.0)
glue * 1.7.0 2024-01-09 [1] CRAN (R 4.3.1)
GO.db * 3.18.0 2024-02-27 [1] Bioconductor
goftest 1.2-3 2021-10-07 [1] CRAN (R 4.3.0)
googledrive 2.1.1 2023-06-11 [1] CRAN (R 4.3.0)
googlesheets4 * 1.1.1 2023-06-11 [1] CRAN (R 4.3.0)
gplots 3.1.3.1 2024-02-02 [1] CRAN (R 4.3.1)
graph 1.80.0 2023-10-26 [1] Bioconductor
gridExtra 2.3 2017-09-09 [1] CRAN (R 4.3.0)
gtable 0.3.4 2023-08-21 [1] CRAN (R 4.3.0)
gtools 3.9.5 2023-11-20 [1] CRAN (R 4.3.1)
hdf5r 1.3.9 2024-01-14 [1] CRAN (R 4.3.1)
here * 1.0.1 2020-12-13 [1] CRAN (R 4.3.0)
Hmisc 5.1-1 2023-09-12 [1] CRAN (R 4.3.0)
hms 1.1.3 2023-03-21 [1] CRAN (R 4.3.0)
Homo.sapiens * 1.3.1 2024-02-27 [1] Bioconductor
htmlTable 2.4.2 2023-10-29 [1] CRAN (R 4.3.1)
htmltools 0.5.7 2023-11-03 [1] CRAN (R 4.3.1)
htmlwidgets 1.6.4 2023-12-06 [1] CRAN (R 4.3.1)
httpuv 1.6.14 2024-01-26 [1] CRAN (R 4.3.1)
httr 1.4.7 2023-08-15 [1] CRAN (R 4.3.0)
ica 1.0-3 2022-07-08 [1] CRAN (R 4.3.0)
igraph 2.0.2 2024-02-17 [1] CRAN (R 4.3.1)
inline 0.3.19 2021-05-31 [1] CRAN (R 4.3.0)
IRanges * 2.36.0 2023-10-26 [1] Bioconductor
irlba 2.3.5.1 2022-10-03 [1] CRAN (R 4.3.2)
iterators 1.0.14 2022-02-05 [1] CRAN (R 4.3.0)
janitor * 2.2.0 2023-02-02 [1] CRAN (R 4.3.0)
JASPAR2020 0.99.10 2024-02-27 [1] Bioconductor
jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.3.0)
jsonlite 1.8.8 2023-12-04 [1] CRAN (R 4.3.1)
KEGGREST 1.42.0 2023-10-26 [1] Bioconductor
KernSmooth 2.23-22 2023-07-10 [1] CRAN (R 4.3.2)
knitr 1.45 2023-10-30 [1] CRAN (R 4.3.1)
later 1.3.2 2023-12-06 [1] CRAN (R 4.3.1)
lattice 0.22-5 2023-10-24 [1] CRAN (R 4.3.1)
lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.3.0)
leiden 0.4.3.1 2023-11-17 [1] CRAN (R 4.3.1)
lifecycle 1.0.4 2023-11-07 [1] CRAN (R 4.3.1)
limma 3.58.1 2023-11-02 [1] Bioconductor
listenv 0.9.1 2024-01-29 [1] CRAN (R 4.3.1)
lmtest 0.9-40 2022-03-21 [1] CRAN (R 4.3.0)
locfit 1.5-9.8 2023-06-11 [1] CRAN (R 4.3.0)
loo 2.7.0 2024-02-24 [1] CRAN (R 4.3.1)
lubridate * 1.9.3 2023-09-27 [1] CRAN (R 4.3.1)
lungref.SeuratData 2.0.0 2024-02-29 [1] local
M3Drop 1.28.0 2023-10-26 [1] Bioconductor
magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.3.0)
MASS 7.3-60.0.1 2024-01-13 [1] CRAN (R 4.3.1)
Matrix * 1.6-5 2024-01-11 [1] CRAN (R 4.3.1)
MatrixGenerics * 1.14.0 2023-10-26 [1] Bioconductor
matrixStats * 1.2.0 2023-12-11 [1] CRAN (R 4.3.1)
MCMCprecision 0.4.0 2019-12-05 [1] CRAN (R 4.3.0)
memoise 2.0.1 2021-11-26 [1] CRAN (R 4.3.0)
metapod 1.10.1 2023-12-23 [1] Bioconductor 3.18 (R 4.3.2)
mgcv 1.9-1 2023-12-21 [1] CRAN (R 4.3.1)
mime 0.12 2021-09-28 [1] CRAN (R 4.3.0)
miniUI 0.1.1.1 2018-05-18 [1] CRAN (R 4.3.0)
msigdbr * 7.5.1 2022-03-30 [1] CRAN (R 4.3.0)
munsell 0.5.0 2018-06-12 [1] CRAN (R 4.3.0)
mvtnorm 1.2-4 2023-11-27 [1] CRAN (R 4.3.1)
nlme 3.1-164 2023-11-27 [1] CRAN (R 4.3.1)
nnet 7.3-19 2023-05-03 [1] CRAN (R 4.3.2)
numDeriv 2016.8-1.1 2019-06-06 [1] CRAN (R 4.3.0)
org.Hs.eg.db * 3.18.0 2024-02-27 [1] Bioconductor
OrganismDbi * 1.44.0 2023-10-26 [1] Bioconductor
parallelly 1.37.0 2024-02-14 [1] CRAN (R 4.3.1)
patchwork * 1.2.0 2024-01-08 [1] CRAN (R 4.3.1)
pbapply 1.7-2 2023-06-27 [1] CRAN (R 4.3.0)
pbmcref.SeuratData 1.0.0 2024-10-04 [1] local
pillar 1.9.0 2023-03-22 [1] CRAN (R 4.3.0)
pkgbuild 1.4.3 2023-12-10 [1] CRAN (R 4.3.1)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.3.0)
plotly 4.10.4 2024-01-13 [1] CRAN (R 4.3.1)
plyr 1.8.9 2023-10-02 [1] CRAN (R 4.3.1)
png 0.1-8 2022-11-29 [1] CRAN (R 4.3.0)
polyclip 1.10-6 2023-09-27 [1] CRAN (R 4.3.1)
poweRlaw 0.80.0 2024-01-25 [1] CRAN (R 4.3.1)
pracma 2.4.4 2023-11-10 [1] CRAN (R 4.3.1)
presto 1.0.0 2024-02-27 [1] Github (immunogenomics/presto@31dc97f)
prettyunits 1.2.0 2023-09-24 [1] CRAN (R 4.3.1)
progress 1.2.3 2023-12-06 [1] CRAN (R 4.3.1)
progressr 0.14.0 2023-08-10 [1] CRAN (R 4.3.0)
promises 1.2.1 2023-08-10 [1] CRAN (R 4.3.0)
ProtGenerics 1.34.0 2023-10-26 [1] Bioconductor
proxyC 0.3.4 2023-10-25 [1] CRAN (R 4.3.1)
purrr * 1.0.2 2023-08-10 [1] CRAN (R 4.3.0)
QuickJSR 1.1.3 2024-01-31 [1] CRAN (R 4.3.1)
R.methodsS3 1.8.2 2022-06-13 [1] CRAN (R 4.3.0)
R.oo 1.26.0 2024-01-24 [1] CRAN (R 4.3.1)
R.utils 2.12.3 2023-11-18 [1] CRAN (R 4.3.1)
R6 2.5.1 2021-08-19 [1] CRAN (R 4.3.0)
RANN 2.6.1 2019-01-08 [1] CRAN (R 4.3.0)
rappdirs 0.3.3 2021-01-31 [1] CRAN (R 4.3.0)
RBGL 1.78.0 2023-10-26 [1] Bioconductor
RColorBrewer 1.1-3 2022-04-03 [1] CRAN (R 4.3.0)
Rcpp 1.0.12 2024-01-09 [1] CRAN (R 4.3.1)
RcppAnnoy 0.0.22 2024-01-23 [1] CRAN (R 4.3.1)
RcppEigen 0.3.3.9.4 2023-11-02 [1] CRAN (R 4.3.1)
RcppHNSW 0.6.0 2024-02-04 [1] CRAN (R 4.3.1)
RcppParallel 5.1.7 2023-02-27 [1] CRAN (R 4.3.0)
RcppRoll 0.3.0 2018-06-05 [1] CRAN (R 4.3.0)
RCurl 1.98-1.14 2024-01-09 [1] CRAN (R 4.3.1)
readr * 2.1.5 2024-01-10 [1] CRAN (R 4.3.1)
reldist 1.7-2 2023-02-17 [1] CRAN (R 4.3.0)
reshape2 1.4.4 2020-04-09 [1] CRAN (R 4.3.0)
ResidualMatrix 1.12.0 2023-11-06 [1] Bioconductor
restfulr 0.0.15 2022-06-16 [1] CRAN (R 4.3.0)
reticulate 1.35.0 2024-01-31 [1] CRAN (R 4.3.1)
rhdf5 2.46.1 2023-12-02 [1] Bioconductor 3.18 (R 4.3.2)
rhdf5filters 1.14.1 2023-12-16 [1] Bioconductor 3.18 (R 4.3.2)
Rhdf5lib 1.24.2 2024-02-10 [1] Bioconductor 3.18 (R 4.3.2)
rjson 0.2.21 2022-01-09 [1] CRAN (R 4.3.0)
rlang 1.1.3 2024-01-10 [1] CRAN (R 4.3.1)
rmarkdown 2.25 2023-09-18 [1] CRAN (R 4.3.1)
robustbase 0.99-2 2024-01-27 [1] CRAN (R 4.3.1)
ROCR 1.0-11 2020-05-02 [1] CRAN (R 4.3.0)
rpart 4.1.23 2023-12-05 [1] CRAN (R 4.3.1)
rprojroot 2.0.4 2023-11-05 [1] CRAN (R 4.3.1)
Rsamtools 2.18.0 2023-10-26 [1] Bioconductor
RSpectra 0.16-1 2022-04-24 [1] CRAN (R 4.3.0)
RSQLite 2.3.5 2024-01-21 [1] CRAN (R 4.3.1)
rstan 2.32.5 2024-01-10 [1] CRAN (R 4.3.1)
rstantools 2.4.0 2024-01-31 [1] CRAN (R 4.3.1)
rstudioapi 0.15.0 2023-07-07 [1] CRAN (R 4.3.0)
rsvd 1.0.5 2021-04-16 [1] CRAN (R 4.3.0)
rtracklayer 1.62.0 2023-10-26 [1] Bioconductor
Rtsne 0.17 2023-12-07 [1] CRAN (R 4.3.1)
ruv 0.9.7.1 2019-08-30 [1] CRAN (R 4.3.0)
S4Arrays 1.2.0 2023-10-26 [1] Bioconductor
S4Vectors * 0.40.2 2023-11-25 [1] Bioconductor 3.18 (R 4.3.2)
sass 0.4.8 2023-12-06 [1] CRAN (R 4.3.1)
ScaledMatrix 1.10.0 2023-11-06 [1] Bioconductor
scales * 1.3.0 2023-11-28 [1] CRAN (R 4.3.1)
scater * 1.30.1 2023-11-16 [1] Bioconductor
scattermore 1.2 2023-06-12 [1] CRAN (R 4.3.0)
scDblFinder * 1.16.0 2023-12-23 [1] Bioconductor 3.18 (R 4.3.2)
scMerge * 1.18.0 2023-12-30 [1] Bioconductor 3.18 (R 4.3.2)
scran * 1.30.2 2024-01-23 [1] Bioconductor 3.18 (R 4.3.2)
sctransform 0.4.1 2023-10-19 [1] CRAN (R 4.3.1)
scuttle * 1.12.0 2023-11-06 [1] Bioconductor
seqLogo 1.68.0 2023-10-26 [1] Bioconductor
sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.3.0)
Seurat * 5.0.1.9009 2024-02-28 [1] Github (satijalab/seurat@6a3ef5e)
SeuratData 0.2.2.9001 2024-02-28 [1] Github (satijalab/seurat-data@0cce240)
SeuratDisk 0.0.0.9021 2024-02-27 [1] Github (mojaveazure/seurat-disk@877d4e1)
SeuratObject * 5.0.1 2023-11-17 [1] CRAN (R 4.3.1)
sfsmisc 1.1-17 2024-02-01 [1] CRAN (R 4.3.1)
shiny 1.8.0 2023-11-17 [1] CRAN (R 4.3.1)
shinyBS * 0.61.1 2022-04-17 [1] CRAN (R 4.3.0)
shinydashboard 0.7.2 2021-09-30 [1] CRAN (R 4.3.0)
shinyjs 2.1.0 2021-12-23 [1] CRAN (R 4.3.0)
Signac 1.12.0 2023-11-08 [1] CRAN (R 4.3.1)
SingleCellExperiment * 1.24.0 2023-11-06 [1] Bioconductor
snakecase 0.11.1 2023-08-27 [1] CRAN (R 4.3.0)
sp * 2.1-3 2024-01-30 [1] CRAN (R 4.3.1)
spam 2.10-0 2023-10-23 [1] CRAN (R 4.3.1)
SparseArray 1.2.4 2024-02-10 [1] Bioconductor 3.18 (R 4.3.2)
sparseMatrixStats 1.14.0 2023-10-26 [1] Bioconductor
spatstat.data 3.0-4 2024-01-15 [1] CRAN (R 4.3.1)
spatstat.explore 3.2-6 2024-02-01 [1] CRAN (R 4.3.1)
spatstat.geom 3.2-8 2024-01-26 [1] CRAN (R 4.3.1)
spatstat.random 3.2-2 2023-11-29 [1] CRAN (R 4.3.1)
spatstat.sparse 3.0-3 2023-10-24 [1] CRAN (R 4.3.1)
spatstat.utils 3.0-4 2023-10-24 [1] CRAN (R 4.3.1)
StanHeaders 2.32.5 2024-01-10 [1] CRAN (R 4.3.1)
startupmsg 0.9.6.1 2024-02-12 [1] CRAN (R 4.3.1)
statmod 1.5.0 2023-01-06 [1] CRAN (R 4.3.0)
stringi 1.8.3 2023-12-11 [1] CRAN (R 4.3.1)
stringr * 1.5.1 2023-11-14 [1] CRAN (R 4.3.1)
SummarizedExperiment * 1.32.0 2023-11-06 [1] Bioconductor
survival 3.5-8 2024-02-14 [1] CRAN (R 4.3.1)
tensor 1.5 2012-05-05 [1] CRAN (R 4.3.0)
TFBSTools 1.40.0 2023-10-24 [1] Bioconductor
TFMPvalue 0.0.9 2022-10-21 [1] CRAN (R 4.3.0)
tibble * 3.2.1 2023-03-20 [1] CRAN (R 4.3.0)
tidyr * 1.3.1 2024-01-24 [1] CRAN (R 4.3.1)
tidyselect 1.2.0 2022-10-10 [1] CRAN (R 4.3.0)
tidyverse * 2.0.0 2023-02-22 [1] CRAN (R 4.3.0)
timechange 0.3.0 2024-01-18 [1] CRAN (R 4.3.1)
tonsilref.SeuratData 2.0.0 2024-02-29 [1] local
TxDb.Hsapiens.UCSC.hg19.knownGene * 3.2.2 2024-02-27 [1] Bioconductor
tzdb 0.4.0 2023-05-12 [1] CRAN (R 4.3.0)
utf8 1.2.4 2023-10-22 [1] CRAN (R 4.3.1)
uwot 0.1.16 2023-06-29 [1] CRAN (R 4.3.0)
vctrs 0.6.5 2023-12-01 [1] CRAN (R 4.3.1)
vipor 0.4.7 2023-12-18 [1] CRAN (R 4.3.1)
viridis 0.6.5 2024-01-29 [1] CRAN (R 4.3.1)
viridisLite 0.4.2 2023-05-02 [1] CRAN (R 4.3.0)
whisker 0.4.1 2022-12-05 [1] CRAN (R 4.3.0)
withr 3.0.0 2024-01-16 [1] CRAN (R 4.3.1)
workflowr 1.7.1 2023-08-23 [1] CRAN (R 4.3.0)
WriteXLS 6.5.0 2024-01-09 [1] CRAN (R 4.3.1)
xfun 0.42 2024-02-08 [1] CRAN (R 4.3.1)
xgboost 1.7.7.1 2024-01-25 [1] CRAN (R 4.3.1)
XML 3.99-0.16.1 2024-01-22 [1] CRAN (R 4.3.1)
xml2 1.3.6 2023-12-04 [1] CRAN (R 4.3.1)
xtable 1.8-4 2019-04-21 [1] CRAN (R 4.3.0)
XVector 0.42.0 2023-10-26 [1] Bioconductor
yaml 2.3.8 2023-12-11 [1] CRAN (R 4.3.1)
zlibbioc 1.48.0 2023-10-26 [1] Bioconductor
zoo 1.8-12 2023-04-13 [1] CRAN (R 4.3.0)
[1] /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library
──────────────────────────────────────────────────────────────────────────────
sessionInfo()
R version 4.3.2 (2023-10-31)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS 15.0.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Australia/Melbourne
tzcode source: internal
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] ggstats_0.5.1
[2] googlesheets4_1.1.1
[3] scMerge_1.18.0
[4] scDblFinder_1.16.0
[5] Azimuth_0.5.0
[6] shinyBS_0.61.1
[7] decontX_1.0.0
[8] celda_1.18.1
[9] Matrix_1.6-5
[10] Seurat_5.0.1.9009
[11] SeuratObject_5.0.1
[12] sp_2.1-3
[13] EnsDb.Hsapiens.v86_2.99.0
[14] ensembldb_2.26.0
[15] AnnotationFilter_1.26.0
[16] msigdbr_7.5.1
[17] Homo.sapiens_1.3.1
[18] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
[19] org.Hs.eg.db_3.18.0
[20] GO.db_3.18.0
[21] OrganismDbi_1.44.0
[22] GenomicFeatures_1.54.3
[23] AnnotationDbi_1.64.1
[24] scales_1.3.0
[25] patchwork_1.2.0
[26] cowplot_1.1.3
[27] janitor_2.2.0
[28] scater_1.30.1
[29] scran_1.30.2
[30] scuttle_1.12.0
[31] SingleCellExperiment_1.24.0
[32] SummarizedExperiment_1.32.0
[33] Biobase_2.62.0
[34] GenomicRanges_1.54.1
[35] GenomeInfoDb_1.38.6
[36] IRanges_2.36.0
[37] S4Vectors_0.40.2
[38] BiocGenerics_0.48.1
[39] MatrixGenerics_1.14.0
[40] matrixStats_1.2.0
[41] glue_1.7.0
[42] here_1.0.1
[43] lubridate_1.9.3
[44] forcats_1.0.0
[45] stringr_1.5.1
[46] dplyr_1.1.4
[47] purrr_1.0.2
[48] readr_2.1.5
[49] tidyr_1.3.1
[50] tibble_3.2.1
[51] ggplot2_3.5.0
[52] tidyverse_2.0.0
[53] BiocParallel_1.36.0
[54] BiocStyle_2.30.0
loaded via a namespace (and not attached):
[1] igraph_2.0.2 graph_1.80.0
[3] Formula_1.2-5 ica_1.0-3
[5] plotly_4.10.4 zlibbioc_1.48.0
[7] tidyselect_1.2.0 bit_4.0.5
[9] doParallel_1.0.17 lattice_0.22-5
[11] rjson_0.2.21 M3Drop_1.28.0
[13] blob_1.2.4 S4Arrays_1.2.0
[15] parallel_4.3.2 seqLogo_1.68.0
[17] png_0.1-8 ResidualMatrix_1.12.0
[19] cli_3.6.2 ProtGenerics_1.34.0
[21] goftest_1.2-3 gargle_1.5.2
[23] BiocIO_1.12.0 bluster_1.12.0
[25] densEstBayes_1.0-2.2 BiocNeighbors_1.20.2
[27] Signac_1.12.0 uwot_0.1.16
[29] curl_5.2.0 mime_0.12
[31] evaluate_0.23 leiden_0.4.3.1
[33] stringi_1.8.3 backports_1.4.1
[35] XML_3.99-0.16.1 httpuv_1.6.14
[37] magrittr_2.0.3 rappdirs_0.3.3
[39] splines_4.3.2 RcppRoll_0.3.0
[41] DT_0.32 sctransform_0.4.1
[43] ggbeeswarm_0.7.2 sessioninfo_1.2.2
[45] DBI_1.2.2 jquerylib_0.1.4
[47] withr_3.0.0 git2r_0.33.0
[49] rprojroot_2.0.4 xgboost_1.7.7.1
[51] lmtest_0.9-40 RBGL_1.78.0
[53] bdsmatrix_1.3-6 rtracklayer_1.62.0
[55] BiocManager_1.30.22 htmlwidgets_1.6.4
[57] fs_1.6.3 biomaRt_2.58.2
[59] ggrepel_0.9.5 SparseArray_1.2.4
[61] DEoptimR_1.1-3 cellranger_1.1.0
[63] annotate_1.80.0 reticulate_1.35.0
[65] zoo_1.8-12 JASPAR2020_0.99.10
[67] XVector_0.42.0 knitr_1.45
[69] TFBSTools_1.40.0 TFMPvalue_0.0.9
[71] timechange_0.3.0 foreach_1.5.2
[73] fansi_1.0.6 caTools_1.18.2
[75] grid_4.3.2 data.table_1.15.0
[77] rhdf5_2.46.1 ruv_0.9.7.1
[79] R.oo_1.26.0 poweRlaw_0.80.0
[81] RSpectra_0.16-1 irlba_2.3.5.1
[83] fastDummies_1.7.3 ellipsis_0.3.2
[85] lazyeval_0.2.2 yaml_2.3.8
[87] survival_3.5-8 scattermore_1.2
[89] crayon_1.5.2 RcppAnnoy_0.0.22
[91] RColorBrewer_1.1-3 progressr_0.14.0
[93] later_1.3.2 base64enc_0.1-3
[95] ggridges_0.5.6 codetools_0.2-19
[97] KEGGREST_1.42.0 bbmle_1.0.25.1
[99] Rtsne_0.17 startupmsg_0.9.6.1
[101] limma_3.58.1 Rsamtools_2.18.0
[103] filelock_1.0.3 foreign_0.8-86
[105] pkgconfig_2.0.3 xml2_1.3.6
[107] sfsmisc_1.1-17 GenomicAlignments_1.38.2
[109] spatstat.sparse_3.0-3 BSgenome_1.70.2
[111] viridisLite_0.4.2 xtable_1.8-4
[113] plyr_1.8.9 httr_1.4.7
[115] tools_4.3.2 globals_0.16.2
[117] pkgbuild_1.4.3 checkmate_2.3.1
[119] htmlTable_2.4.2 beeswarm_0.4.0
[121] nlme_3.1-164 loo_2.7.0
[123] dbplyr_2.4.0 hdf5r_1.3.9
[125] shinyjs_2.1.0 digest_0.6.34
[127] numDeriv_2016.8-1.1 tzdb_0.4.0
[129] reshape2_1.4.4 cvTools_0.3.2
[131] WriteXLS_6.5.0 viridis_0.6.5
[133] rpart_4.1.23 DirichletMultinomial_1.44.0
[135] cachem_1.0.8 BiocFileCache_2.10.1
[137] polyclip_1.10-6 proxyC_0.3.4
[139] Hmisc_5.1-1 generics_0.1.3
[141] Biostrings_2.70.2 mvtnorm_1.2-4
[143] googledrive_2.1.1 presto_1.0.0
[145] parallelly_1.37.0 statmod_1.5.0
[147] RcppHNSW_0.6.0 ScaledMatrix_1.10.0
[149] pbapply_1.7-2 spam_2.10-0
[151] dqrng_0.3.2 utf8_1.2.4
[153] pbmcref.SeuratData_1.0.0 StanHeaders_2.32.5
[155] gtools_3.9.5 RcppEigen_0.3.3.9.4
[157] gridExtra_2.3 shiny_1.8.0
[159] GenomeInfoDbData_1.2.11 R.utils_2.12.3
[161] rhdf5filters_1.14.1 RCurl_1.98-1.14
[163] memoise_2.0.1 rmarkdown_2.25
[165] R.methodsS3_1.8.2 future_1.33.1
[167] RANN_2.6.1 spatstat.data_3.0-4
[169] rstudioapi_0.15.0 cluster_2.1.6
[171] QuickJSR_1.1.3 whisker_0.4.1
[173] rstantools_2.4.0 spatstat.utils_3.0-4
[175] hms_1.1.3 fitdistrplus_1.1-11
[177] munsell_0.5.0 colorspace_2.1-0
[179] rlang_1.1.3 DelayedMatrixStats_1.24.0
[181] sparseMatrixStats_1.14.0 dotCall64_1.1-1
[183] shinydashboard_0.7.2 dbscan_1.1-12
[185] mgcv_1.9-1 xfun_0.42
[187] CNEr_1.38.0 iterators_1.0.14
[189] reldist_1.7-2 abind_1.4-5
[191] MCMCprecision_0.4.0 rstan_2.32.5
[193] Rhdf5lib_1.24.2 bitops_1.0-7
[195] promises_1.2.1 inline_0.3.19
[197] RSQLite_2.3.5 DelayedArray_0.28.0
[199] compiler_4.3.2 prettyunits_1.2.0
[201] beachmat_2.18.1 listenv_0.9.1
[203] BSgenome.Hsapiens.UCSC.hg38_1.4.5 Rcpp_1.0.12
[205] tonsilref.SeuratData_2.0.0 enrichR_3.2
[207] edgeR_4.0.16 workflowr_1.7.1
[209] BiocSingular_1.18.0 tensor_1.5
[211] MASS_7.3-60.0.1 progress_1.2.3
[213] babelgene_22.9 spatstat.random_3.2-2
[215] R6_2.5.1 fastmap_1.1.1
[217] fastmatch_1.1-4 distr_2.9.3
[219] vipor_0.4.7 ROCR_1.0-11
[221] SeuratDisk_0.0.0.9021 nnet_7.3-19
[223] rsvd_1.0.5 gtable_0.3.4
[225] KernSmooth_2.23-22 lungref.SeuratData_2.0.0
[227] miniUI_0.1.1.1 deldir_2.0-2
[229] htmltools_0.5.7 RcppParallel_5.1.7
[231] bit64_4.0.5 spatstat.explore_3.2-6
[233] lifecycle_1.0.4 restfulr_0.0.15
[235] sass_0.4.8 vctrs_0.6.5
[237] robustbase_0.99-2 spatstat.geom_3.2-8
[239] snakecase_0.11.1 SeuratData_0.2.2.9001
[241] future.apply_1.11.1 pracma_2.4.4
[243] batchelor_1.18.1 bslib_0.6.1
[245] pillar_1.9.0 gplots_3.1.3.1
[247] metapod_1.10.1 locfit_1.5-9.8
[249] combinat_0.0-8 jsonlite_1.8.8