Last updated: 2024-09-23

Checks: 6 1

Knit directory: paed-airway-allTissues/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230811) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 901215e. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    data/RDS/
    Ignored:    output/.DS_Store
    Ignored:    output/CSV/.DS_Store
    Ignored:    output/G000231_Neeland_batch1/
    Ignored:    output/G000231_Neeland_batch2_1/
    Ignored:    output/G000231_Neeland_batch2_2/
    Ignored:    output/G000231_Neeland_batch3/
    Ignored:    output/G000231_Neeland_batch4/
    Ignored:    output/G000231_Neeland_batch5/
    Ignored:    output/G000231_Neeland_batch9_1/
    Ignored:    output/RDS/
    Ignored:    output/plots/

Untracked files:
    Untracked:  Adenoids_Bcell_subset_proportions_Age.pdf
    Untracked:  Adenoids_Tcell_subset_proportions_Age.pdf
    Untracked:  Adenoids_cell_type_proportions_Age.pdf
    Untracked:  Age_proportions_Adenoids.pdf
    Untracked:  Age_proportions_Bronchial_brushings.pdf
    Untracked:  Age_proportions_Nasal_brushings.pdf
    Untracked:  Age_proportions_Tonsils.pdf
    Untracked:  BAL_Tcell_propeller.xlsx
    Untracked:  BAL_propeller.xlsx
    Untracked:  BB_Tcell_propeller.xlsx
    Untracked:  BB_propeller.xlsx
    Untracked:  NB_Tcell_propeller.xlsx
    Untracked:  NB_propeller.csv
    Untracked:  NB_propeller.pdf
    Untracked:  NB_propeller.xlsx
    Untracked:  Tonsils_cell_type_proportions.jpg
    Untracked:  Tonsils_cell_type_proportions.pdf
    Untracked:  Tonsils_cell_type_proportions.png
    Untracked:  Tonsils_cell_type_proportions_Age.pdf
    Untracked:  analysis/03_Batch_Integration.Rmd
    Untracked:  analysis/Age_modelling_Adenoids.Rmd
    Untracked:  analysis/Age_modelling_Bronchial_Brushings.Rmd
    Untracked:  analysis/Age_modelling_Nasal_Brushings.Rmd
    Untracked:  analysis/Age_modelling_Tonsils.Rmd
    Untracked:  analysis/Age_proportions.Rmd
    Untracked:  analysis/Age_proportions_AllBatches.Rmd
    Untracked:  analysis/BAL_without_DecontX.Rmd
    Untracked:  analysis/Batch_Integration_&_Downstream_analysis.Rmd
    Untracked:  analysis/Batch_correction_&_Downstream.Rmd
    Untracked:  analysis/Boxplot_Adenoids.pdf
    Untracked:  analysis/Boxplot_BAL.pdf
    Untracked:  analysis/Boxplot_Bronchial_brushings.pdf
    Untracked:  analysis/Boxplot_Nasal_brushings.pdf
    Untracked:  analysis/Boxplot_Tonsils.pdf
    Untracked:  analysis/Cell_cycle_regression.Rmd
    Untracked:  analysis/Master_metadata.Rmd
    Untracked:  analysis/Preprocessing_Batch1_Nasal_brushings.Rmd
    Untracked:  analysis/Preprocessing_Batch2_Tonsils.Rmd
    Untracked:  analysis/Preprocessing_Batch3_Adenoids.Rmd
    Untracked:  analysis/Preprocessing_Batch4_Bronchial_brushings.Rmd
    Untracked:  analysis/Preprocessing_Batch5_Nasal_brushings.Rmd
    Untracked:  analysis/Preprocessing_Batch6_BAL.Rmd
    Untracked:  analysis/Preprocessing_Batch7_Bronchial_brushings.Rmd
    Untracked:  analysis/Preprocessing_Batch8_Adenoids.Rmd
    Untracked:  analysis/Preprocessing_Batch9_Tonsils.Rmd
    Untracked:  analysis/Subclustering_Adenoids.Rmd
    Untracked:  analysis/Subclustering_Nasal_brushings.Rmd
    Untracked:  analysis/TonsilsVsAdenoids.Rmd
    Untracked:  analysis/boxplot_proportions_Adenoids.pdf
    Untracked:  analysis/boxplot_proportions_BAL.pdf
    Untracked:  analysis/boxplot_proportions_Bronchial_brushings.pdf
    Untracked:  analysis/boxplot_proportions_Nasal_brushings.pdf
    Untracked:  analysis/boxplot_proportions_Tonsils.pdf
    Untracked:  analysis/boxplot_proportions__broad_l2Adenoids.pdf
    Untracked:  analysis/boxplot_proportions__broad_l2BAL.pdf
    Untracked:  analysis/boxplot_proportions__broad_l2Bronchial_brushings.pdf
    Untracked:  analysis/boxplot_proportions__broad_l2Nasal_brushings.pdf
    Untracked:  analysis/boxplot_proportions__broad_l2Tonsils.pdf
    Untracked:  analysis/cell_cycle_regression.R
    Untracked:  analysis/test.Rmd
    Untracked:  analysis/testing_age_all.Rmd
    Untracked:  cell_proportions_overview.png
    Untracked:  cell_type_proportions.pdf
    Untracked:  cell_type_proportions_enhanced.pdf
    Untracked:  cell_type_proportions_individual.pdf
    Untracked:  color_palette.rds
    Untracked:  color_palette_v2_level2.rds
    Untracked:  combined_metadata.rds
    Untracked:  data/Cell_labels_Mel/
    Untracked:  data/Cell_labels_Mel_v2/
    Untracked:  data/Cell_labels_modified_Gunjan/
    Untracked:  data/Hs.c2.cp.reactome.v7.1.entrez.rds
    Untracked:  data/Raw_feature_bc_matrix/
    Untracked:  data/celltypes_Mel_GD_v3.xlsx
    Untracked:  data/celltypes_Mel_GD_v4_no_dups.xlsx
    Untracked:  data/celltypes_Mel_modified.xlsx
    Untracked:  data/celltypes_Mel_v2.csv
    Untracked:  data/celltypes_Mel_v2.xlsx
    Untracked:  data/celltypes_Mel_v2_MN.xlsx
    Untracked:  data/celltypes_for_mel_MN.xlsx
    Untracked:  data/earlyAIR_sample_sheets_combined.xlsx
    Untracked:  output/CSV/All_tissues.propeller.xlsx
    Untracked:  output/CSV/Bronchial_brushings/
    Untracked:  output/CSV/Bronchial_brushings_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/
    Untracked:  output/CSV/G000231_Neeland_Adenoids.propeller.xlsx
    Untracked:  output/CSV/G000231_Neeland_Bronchial_brushings.propeller.xlsx
    Untracked:  output/CSV/G000231_Neeland_Nasal_brushings.propeller.xlsx
    Untracked:  output/CSV/G000231_Neeland_Tonsils.propeller.xlsx
    Untracked:  output/CSV/Nasal_brushings/

Unstaged changes:
    Deleted:    02_QC_exploratoryPlots.Rmd
    Deleted:    02_QC_exploratoryPlots.html
    Modified:   analysis/00_AllBatches_overview.Rmd
    Modified:   analysis/01_QC_emptyDrops.Rmd
    Modified:   analysis/02_QC_exploratoryPlots.Rmd
    Modified:   analysis/Adenoids.Rmd
    Modified:   analysis/Age_modeling.Rmd
    Modified:   analysis/AllBatches_QCExploratory.Rmd
    Modified:   analysis/BAL.Rmd
    Modified:   analysis/Bronchial_brushings.Rmd
    Modified:   analysis/Nasal_brushings.Rmd
    Modified:   analysis/Tonsils.Rmd
    Modified:   analysis/index.Rmd
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c0.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c1.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c10.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c11.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c12.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c13.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c14.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c15.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c16.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c17.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c2.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c3.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c4.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c5.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c6.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c7.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c8.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/REACTOME-cluster-limma-c9.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c0.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c1.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c10.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c11.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c12.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c13.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c14.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c15.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c16.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c17.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c2.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c3.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c4.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c5.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c6.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c7.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c8.csv
    Modified:   output/CSV/BAL_Marker_gene_clusters.limmaTrendRNA_snn_res.0.4/up-cluster-limma-c9.csv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Introduction

Load libraries

suppressPackageStartupMessages({
  library(BiocStyle)
  library(tidyverse)
  library(here)
  library(glue)
  library(dplyr)
  library(Seurat)
  library(clustree)
  library(kableExtra)
  library(RColorBrewer)
  library(data.table)
  library(ggplot2)
  library(patchwork)
  library(limma)
  library(edgeR)
  library(speckle)
  library(AnnotationDbi)
  library(org.Hs.eg.db)
  library(readxl)
})

Load Input data

Load merged object (batch corrected/integrated) for the tissue.

tissue <- "Adenoids"
out1 <- here("output",
            "RDS", "AllBatches_Clustering_SEUs",
             paste0("G000231_Neeland_",tissue,".Clusters.SEU.rds"))

merged_obj <- readRDS(out1)
merged_obj
An object of class Seurat 
17456 features across 124956 samples within 1 assay 
Active assay: RNA (17456 features, 2000 variable features)
 3 layers present: data, counts, scale.data
 4 dimensional reductions calculated: pca, umap.unintegrated, harmony, umap.harmony

Reclustering T cell subsets

Reclustering clusters 2,4,6,8,11,13

The marker genes for this reclustering can be found here-

Adenoids_Tcell_population_res.0.4

sub_clusters <- c(2,4,6,8,11,13)

idx <- which(merged_obj$cluster %in% sub_clusters)
paed_sub <- merged_obj[,idx]
paed_sub
An object of class Seurat 
17456 features across 42503 samples within 1 assay 
Active assay: RNA (17456 features, 2000 variable features)
 3 layers present: data, counts, scale.data
 4 dimensional reductions calculated: pca, umap.unintegrated, harmony, umap.harmony
# Visualize the clustering results
DimPlot(paed_sub, reduction = "umap.harmony", group.by = "cluster", label = TRUE, label.size = 2.5, repel = TRUE, raster = FALSE )

paed_sub <- paed_sub %>%
  NormalizeData() %>%
  FindVariableFeatures() %>%
  ScaleData() %>%
  RunPCA() 
  
paed_sub <- RunUMAP(paed_sub, dims = 1:30, reduction = "pca", reduction.name = "umap.new")
meta_data_columns <- colnames(paed_sub@meta.data)
columns_to_remove <- grep("^RNA_snn_res", meta_data_columns, value = TRUE)
paed_sub@meta.data <- paed_sub@meta.data[, !(colnames(paed_sub@meta.data) %in% columns_to_remove)]
resolutions <- seq(0.1, 1, by = 0.1)
paed_sub <- FindNeighbors(paed_sub, dims = 1:30, reduction = "pca")
paed_sub <- FindClusters(paed_sub, resolution = resolutions )
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 42503
Number of edges: 1301848

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9540
Number of communities: 6
Elapsed time: 6 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 42503
Number of edges: 1301848

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9338
Number of communities: 11
Elapsed time: 6 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 42503
Number of edges: 1301848

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9218
Number of communities: 14
Elapsed time: 6 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 42503
Number of edges: 1301848

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9108
Number of communities: 16
Elapsed time: 6 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 42503
Number of edges: 1301848

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9010
Number of communities: 16
Elapsed time: 6 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 42503
Number of edges: 1301848

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8913
Number of communities: 18
Elapsed time: 5 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 42503
Number of edges: 1301848

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8824
Number of communities: 20
Elapsed time: 7 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 42503
Number of edges: 1301848

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8752
Number of communities: 22
Elapsed time: 6 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 42503
Number of edges: 1301848

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8673
Number of communities: 21
Elapsed time: 6 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 42503
Number of edges: 1301848

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8596
Number of communities: 22
Elapsed time: 6 seconds
clustree(paed_sub, prefix = "RNA_snn_res.")

# Visualize the clustering results
DimPlot(paed_sub, group.by = "RNA_snn_res.0.4", reduction = "umap.new", label = TRUE, label.size = 2.5, repel = TRUE, raster = FALSE )

opt_res <- "RNA_snn_res.0.4"  
n <- nlevels(paed_sub$RNA_snn_res.0.4)
paed_sub$RNA_snn_res.0.4 <- factor(paed_sub$RNA_snn_res.0.4, levels = seq(0,n-1))
paed_sub$seurat_clusters <- NULL
paed_sub$cluster <- paed_sub$RNA_snn_res.0.4
Idents(paed_sub) <- paed_sub$cluster
paed_sub.markers <- FindAllMarkers(paed_sub, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
Calculating cluster 0
Calculating cluster 1
Calculating cluster 2
Calculating cluster 3
Calculating cluster 4
Calculating cluster 5
Calculating cluster 6
Calculating cluster 7
Calculating cluster 8
Calculating cluster 9
Calculating cluster 10
Calculating cluster 11
Calculating cluster 12
Calculating cluster 13
Calculating cluster 14
Calculating cluster 15
paed_sub.markers %>%
    group_by(cluster) %>% unique() %>% 
    top_n(n = 5, wt = avg_log2FC) -> top5

paed_sub.markers %>%
    group_by(cluster) %>% 
    slice_head(n=1) %>% 
    pull(gene) -> best.wilcox.gene.per.cluster

best.wilcox.gene.per.cluster
 [1] "TOX2"   "KLF2"   "GPR183" "CCL5"   "CD8A"   "MAF"    "KLF2"   "IFI44L"
 [9] "FOXP3"  "TRDC"   "EGR2"   "ACTB"   "GZMK"   "CCL5"   "NKG7"   "MS4A1" 

Violin plot shows the expression of top marker gene per cluster.

VlnPlot(paed_sub, features=best.wilcox.gene.per.cluster, ncol = 2, raster = FALSE, pt.size = FALSE)

Feature plot shows the expression of top marker genes per cluster.

FeaturePlot(paed_sub,features=best.wilcox.gene.per.cluster, reduction = 'umap.new', raster = FALSE, ncol = 3, label = TRUE)

Top 10 marker genes from Seurat

## Seurat top markers
top10 <- paed_sub.markers %>%
    group_by(cluster) %>%
    top_n(n = 10, wt = avg_log2FC) %>%
    ungroup() %>%
    distinct(gene, .keep_all = TRUE) %>%
    arrange(cluster, desc(avg_log2FC))

cluster_colors <- paletteer::paletteer_d("pals::glasbey")[factor(top10$cluster)]

DotPlot(paed_sub,    
        features = unique(top10$gene),
        group.by = opt_res,
        cols = c("azure1", "blueviolet"),
        dot.scale = 3, assay = "RNA") +
    RotatedAxis() +
    FontSize(y.text = 8, x.text = 12) +
    labs(y = element_blank(), x = element_blank()) +
    coord_flip() +
    theme(axis.text.y = element_text(color = cluster_colors)) +
    ggtitle("Top 10 marker genes per cluster (Seurat)")
Warning: Vectorized input to `element_text()` is not officially supported.
ℹ Results may be unexpected or may change in future versions of ggplot2.

out_markers <- here("output",
            "CSV", 
            paste(tissue,"_Marker_genes_Reclustered_Tcell_population.",opt_res, sep = ""))

dir.create(out_markers, recursive = TRUE, showWarnings = FALSE)

for (cl in unique(paed_sub.markers$cluster)) {
  cluster_data <- paed_sub.markers %>% dplyr::filter(cluster == cl)
  file_name <- here(out_markers, paste0("G000231_Neeland_",tissue, "_cluster_", cl, ".csv"))
  if (!file.exists(file_name)) {
  write.csv(cluster_data, file = file_name)
  }
}

Corresponding Azimuth labels (T cell subsets)

## Level 1
DimPlot(paed_sub, reduction = "umap.new", group.by = "predicted.celltype.l1", raster = FALSE, repel = TRUE, label = TRUE, label.size = 4.5) 

Excluding contaminating cells (B cell subtypes) for further clarity

sort(table(paed_sub$predicted.celltype.l1), decreasing = T)

          CD4 TFH           CD4 TCM         CD4 naive             CD8 T 
            10935              9419              9316              2934 
         CD4 TREG       CD4 TFH Mem       CD4 Non-TFH         CD8 naive 
             2165              1878              1510              1408 
          CD8 TCM               ILC               dnT     NK_CD56bright 
              977               626               569               233 
   non-TRDV2+ gdT   MAIT/TRDV2+ gdT           B naive                NK 
              175               152               103                65 
      B activated          B memory         Cycling T FCRL4/5+ B memory 
               14                10                10                 2 
       PC/doublet            preGCB 
                1                 1 
exclude <- c("B activated", "B memory", "B naive", "FCRL4/5+ B memory", "PC/doublet", "preGCB")

paed_sub_filtered <- paed_sub[, !paed_sub$predicted.celltype.l1 %in% exclude]
# Plots for Level 1
DimPlot(paed_sub_filtered, reduction = "umap.new", group.by = "predicted.celltype.l1", raster = FALSE, repel = TRUE, label = TRUE, label.size = 5) +
    paletteer::scale_colour_paletteer_d("Polychrome::palette36")

df_table_l1 <- as.data.frame(table(paed_sub_filtered$RNA_snn_res.0.4, paed_sub_filtered$predicted.celltype.l1))

ggplot(df_table_l1, aes(Var1, Freq, fill = Var2)) +
  geom_bar(stat = "identity") +
  labs(x = "RNA_snn_res.0.4", y = "Count", fill = "predicted.celltype.l1") +
  theme_minimal() +
  paletteer::scale_fill_paletteer_d("Polychrome::palette36") +
  ggtitle("Stacked Bar Plot of Tcell subsets (res=0.4) and predicted.celltype.l1")

# Plots for Level 2
DimPlot(paed_sub_filtered, reduction = "umap.new", group.by = "predicted.celltype.l2", raster = FALSE, repel = TRUE, label = TRUE, label.size = 5)  +
    paletteer::scale_colour_paletteer_d("Polychrome::palette36")

df_table_l2 <- as.data.frame(table(paed_sub_filtered$RNA_snn_res.0.4, paed_sub_filtered$predicted.celltype.l2))

ggplot(df_table_l2, aes(Var1, Freq, fill = Var2)) +
  geom_bar(stat = "identity") +
  labs(x = "RNA_snn_res.0.4", y = "Count", fill = "predicted.celltype.l2") +
  theme_minimal() +
  paletteer::scale_fill_paletteer_d("Polychrome::palette36") +
  ggtitle("Stacked Bar Plot of Tcell subsets (res=0.4) and predicted.celltype.l2")

Update T subclustering labels

cell_labels <- readxl::read_excel(here("data/Cell_labels_Mel_v2/earlyAIR_Tonsil_and_Adenoid_T-NK_annotations_17.07.24.xlsx"), sheet = "Adenoid")
new_cluster_names <- cell_labels %>% 
  dplyr::select(cluster, annotation) %>% 
  deframe()

paed_sub <- RenameIdents(paed_sub, new_cluster_names)
paed_sub@meta.data$cell_labels_v2 <- Idents(paed_sub)

DimPlot(paed_sub, reduction = "umap.new", raster = FALSE, repel = TRUE, label = TRUE, label.size = 3.5) + ggtitle(paste0(tissue, ": UMAP with Updated subclustering"))

palette1 <- paletteer::paletteer_d("ggthemes::Classic_20")
palette2 <- paletteer::paletteer_d("Polychrome::light")
combined_palette <- unique(c(palette1, palette2))

labels <- c("cell_labels", "cell_labels_v2", "RNA_snn_res.0.4")

p <- vector("list",length(labels))
for(label in labels){
  paed_sub@meta.data %>%
    ggplot(aes(x = !!sym(label), 
               fill = !!sym(label))) +
    geom_bar() +
    geom_text(aes(label = ..count..), stat = "count",
              vjust = -0.5, colour = "black", size = 2) +
    scale_y_log10() +
    theme(axis.text.x = element_blank(),
          axis.title.x = element_blank(),
          axis.ticks.x = element_blank()) +
    NoLegend() +
    labs(y = "No. Cells (log scale)") -> p1
  
  paed_sub@meta.data %>%
    dplyr::select(!!sym(label), Sample) %>%
    group_by(!!sym(label), Sample) %>%
    summarise(num = n()) %>%
    mutate(prop = num / sum(num)) %>%
  ggplot(aes(x = !!sym(label), y = prop * 100, 
             fill = Sample)) + 
    geom_bar(stat = "identity") +
    theme(axis.text.x = element_text(angle = 90, 
                                     vjust = 0.5, 
                                     hjust = 1,
                                     size = 8)) +
    labs(y = "% Cells", fill = "Sample") +
  scale_fill_manual(values = combined_palette) -> p2
  
  (p1 / p2) & theme(legend.text = element_text(size = 8),
                  legend.key.size = unit(3, "mm")) -> p[[label]]
}
`summarise()` has grouped output by 'cell_labels'. You can override using the
`.groups` argument.
`summarise()` has grouped output by 'cell_labels_v2'. You can override using
the `.groups` argument.
`summarise()` has grouped output by 'RNA_snn_res.0.4'. You can override using
the `.groups` argument.
p
[[1]]
NULL

[[2]]
NULL

[[3]]
NULL

$cell_labels
Warning: The dot-dot notation (`..count..`) was deprecated in ggplot2 3.4.0.
ℹ Please use `after_stat(count)` instead.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated.


$cell_labels_v2


$RNA_snn_res.0.4

Save subclustered SEU object (Tcells)

out2 <- here("output",
            "RDS", "AllBatches_Subclustering_SEUs", tissue,
             paste0("G000231_Neeland_",tissue,".Tcell_population.subclusters.SEU.rds"))
#dir.create(out2)
if (!file.exists(out2)) {
  saveRDS(paed_sub, file = out2)
}

Reclustering Germinal Center B cells

Reclustering clusters 3,5,9

The marker genes for this reclustering can be found here-

Adenoids_GC_population_res.0.6

sub_clusters <- c(3,5,9)

idx <- which(merged_obj$cluster %in% sub_clusters)
paed_sub <- merged_obj[,idx]
paed_sub
An object of class Seurat 
17456 features across 25451 samples within 1 assay 
Active assay: RNA (17456 features, 2000 variable features)
 3 layers present: data, counts, scale.data
 4 dimensional reductions calculated: pca, umap.unintegrated, harmony, umap.harmony
# Visualize the clustering results
DimPlot(paed_sub, reduction = "umap.harmony", group.by = "cluster", label = TRUE, label.size = 2.5, repel = TRUE, raster = FALSE )

paed_sub <- paed_sub %>%
  NormalizeData() %>%
  FindVariableFeatures() %>%
  ScaleData() %>%
  RunPCA() 
  
paed_sub <- RunUMAP(paed_sub, dims = 1:30, reduction = "pca", reduction.name = "umap.new")
meta_data_columns <- colnames(paed_sub@meta.data)
columns_to_remove <- grep("^RNA_snn_res", meta_data_columns, value = TRUE)
paed_sub@meta.data <- paed_sub@meta.data[, !(colnames(paed_sub@meta.data) %in% columns_to_remove)]
resolutions <- seq(0.1, 1, by = 0.1)
paed_sub <- FindNeighbors(paed_sub, dims = 1:30, reduction = "pca")
paed_sub <- FindClusters(paed_sub, resolution = resolutions )
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 25451
Number of edges: 785374

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9400
Number of communities: 3
Elapsed time: 3 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 25451
Number of edges: 785374

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9065
Number of communities: 5
Elapsed time: 4 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 25451
Number of edges: 785374

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8875
Number of communities: 7
Elapsed time: 4 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 25451
Number of edges: 785374

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8694
Number of communities: 8
Elapsed time: 3 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 25451
Number of edges: 785374

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8567
Number of communities: 10
Elapsed time: 3 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 25451
Number of edges: 785374

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8463
Number of communities: 13
Elapsed time: 3 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 25451
Number of edges: 785374

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8357
Number of communities: 15
Elapsed time: 3 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 25451
Number of edges: 785374

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8249
Number of communities: 15
Elapsed time: 3 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 25451
Number of edges: 785374

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8173
Number of communities: 17
Elapsed time: 3 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 25451
Number of edges: 785374

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.8088
Number of communities: 16
Elapsed time: 3 seconds
clustree(paed_sub, prefix = "RNA_snn_res.")

# Visualize the clustering results
DimPlot(paed_sub, group.by = "RNA_snn_res.0.6", reduction = "umap.new", label = TRUE, label.size = 2.5, repel = TRUE, raster = FALSE )

opt_res <- "RNA_snn_res.0.6"  
n <- nlevels(paed_sub$RNA_snn_res.0.6)
paed_sub$RNA_snn_res.0.6 <- factor(paed_sub$RNA_snn_res.0.6, levels = seq(0,n-1))
paed_sub$seurat_clusters <- NULL
paed_sub$cluster <- paed_sub$RNA_snn_res.0.6
Idents(paed_sub) <- paed_sub$cluster
paed_sub.markers <- FindAllMarkers(paed_sub, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
Calculating cluster 0
Calculating cluster 1
Calculating cluster 2
Calculating cluster 3
Calculating cluster 4
Calculating cluster 5
Calculating cluster 6
Calculating cluster 7
Calculating cluster 8
Calculating cluster 9
Calculating cluster 10
Calculating cluster 11
Calculating cluster 12
paed_sub.markers %>%
    group_by(cluster) %>% unique() %>% 
    top_n(n = 5, wt = avg_log2FC) -> top5

paed_sub.markers %>%
    group_by(cluster) %>% 
    slice_head(n=1) %>% 
    pull(gene) -> best.wilcox.gene.per.cluster

best.wilcox.gene.per.cluster
 [1] "LMO2"      "DDIT4"     "AICDA"     "BCL2A1"    "CAMK1"     "TYMS"     
 [7] "MCM4"      "HIST1H2BB" "CDC20"     "MKI67"     "PRDM1"     "RAB15"    
[13] "PSAT1"    

Feature plot shows the expression of top marker genes per cluster.

FeaturePlot(paed_sub,features=best.wilcox.gene.per.cluster, reduction = 'umap.new', raster = FALSE, ncol = 2, label = TRUE)

Top 10 marker genes from Seurat

## Seurat top markers
top10 <- paed_sub.markers %>%
    group_by(cluster) %>%
    top_n(n = 10, wt = avg_log2FC) %>%
    ungroup() %>%
    distinct(gene, .keep_all = TRUE) %>%
    arrange(cluster, desc(avg_log2FC))

cluster_colors <- paletteer::paletteer_d("pals::glasbey")[factor(top10$cluster)]

DotPlot(paed_sub,    
        features = unique(top10$gene),
        group.by = opt_res,
        cols = c("azure1", "blueviolet"),
        dot.scale = 3, assay = "RNA") +
    RotatedAxis() +
    FontSize(y.text = 8, x.text = 12) +
    labs(y = element_blank(), x = element_blank()) +
    coord_flip() +
    theme(axis.text.y = element_text(color = cluster_colors)) +
    ggtitle("Top 10 marker genes per cluster (Seurat)")
Warning: Vectorized input to `element_text()` is not officially supported.
ℹ Results may be unexpected or may change in future versions of ggplot2.

out_markers <- here("output",
            "CSV", 
            paste(tissue,"_Marker_genes_Reclustered_GC_population.",opt_res, sep = ""))

dir.create(out_markers, recursive = TRUE, showWarnings = FALSE)

for (cl in unique(paed_sub.markers$cluster)) {
  cluster_data <- paed_sub.markers %>% dplyr::filter(cluster == cl)
  file_name <- here(out_markers, paste0("G000231_Neeland_",tissue, "_cluster_", cl, ".csv"))
  write.csv(cluster_data, file = file_name)
}

Corresponding Azimuth labels (GC cell subsets)

## Level 1
DimPlot(paed_sub, reduction = "umap.new", group.by = "predicted.celltype.l1", raster = FALSE, repel = TRUE, label = TRUE, label.size = 4.5) 

df_table <- as.data.frame(table(paed_sub$RNA_snn_res.0.6, paed_sub$predicted.celltype.l1))
ggplot(df_table, aes(Var1, Freq, fill = Var2)) +
  geom_bar(stat = "identity") +
  labs(x = "RNA_snn_res.0.6", y = "Count", fill = "predicted.celltype.l1") +
  theme_minimal() +
  ggtitle("Stacked Bar Plot of Tcell subsets (res=0.6) and predicted.celltype.l1")

Update GC subclustering labels

cell_labels <- readxl::read_excel(here("data/Cell_labels_Mel_v2/earlyAIR_Tonsil_and_Adenoid_GC-B cell annotations_09.08.24.xlsx"), sheet = "Adenoid")
new_cluster_names <- cell_labels %>% 
  dplyr::select(cluster, annotation) %>% 
  deframe()

paed_sub <- RenameIdents(paed_sub, new_cluster_names)
paed_sub@meta.data$cell_labels_v2 <- Idents(paed_sub)

DimPlot(paed_sub, reduction = "umap.new", raster = FALSE, repel = TRUE, label = TRUE, label.size = 3.5) + ggtitle(paste0(tissue, ": UMAP with Updated subclustering"))

palette1 <- paletteer::paletteer_d("ggthemes::Classic_20")
palette2 <- paletteer::paletteer_d("Polychrome::light")
combined_palette <- unique(c(palette1, palette2))

labels <- c( "cell_labels", "cell_labels_v2", "RNA_snn_res.0.6")

p <- vector("list",length(labels))
for(label in labels){
  paed_sub@meta.data %>%
    ggplot(aes(x = !!sym(label), 
               fill = !!sym(label))) +
    geom_bar() +
    geom_text(aes(label = ..count..), stat = "count",
              vjust = -0.5, colour = "black", size = 2) +
    scale_y_log10() +
    theme(axis.text.x = element_blank(),
          axis.title.x = element_blank(),
          axis.ticks.x = element_blank()) +
    NoLegend() +
    labs(y = "No. Cells (log scale)") -> p1
  
  paed_sub@meta.data %>%
    dplyr::select(!!sym(label), Sample) %>%
    group_by(!!sym(label), Sample) %>%
    summarise(num = n()) %>%
    mutate(prop = num / sum(num)) %>%
  ggplot(aes(x = !!sym(label), y = prop * 100, 
             fill = Sample)) + 
    geom_bar(stat = "identity") +
    theme(axis.text.x = element_text(angle = 90, 
                                     vjust = 0.5, 
                                     hjust = 1,
                                     size = 8)) +
    labs(y = "% Cells", fill = "Sample") +
  scale_fill_manual(values = combined_palette) -> p2
  
  (p1 / p2) & theme(legend.text = element_text(size = 8),
                  legend.key.size = unit(3, "mm")) -> p[[label]]
}
`summarise()` has grouped output by 'cell_labels'. You can override using the
`.groups` argument.
`summarise()` has grouped output by 'cell_labels_v2'. You can override using
the `.groups` argument.
`summarise()` has grouped output by 'RNA_snn_res.0.6'. You can override using
the `.groups` argument.
p
[[1]]
NULL

[[2]]
NULL

[[3]]
NULL

$cell_labels


$cell_labels_v2


$RNA_snn_res.0.6

Save subclustered SEU object

out2 <- here("output",
            "RDS", "AllBatches_Subclustering_SEUs", tissue,
             paste0("G000231_Neeland_",tissue,".GC_population.subclusters.SEU.rds"))
#dir.create(out2)
if (!file.exists(out2)) {
  saveRDS(paed_sub, file = out2)
}

Confirm cluster 14 (activated DC3)

From Mel’s notes: Confirming CCR7 and LAMP3 expression in cluster 14 currently labelled as “activated DC3 (aDC3)?”

idx <- which(merged_obj$cluster %in% 14)
paed_sub <- merged_obj[,idx]
paed_sub
An object of class Seurat 
17456 features across 859 samples within 1 assay 
Active assay: RNA (17456 features, 2000 variable features)
 3 layers present: data, counts, scale.data
 4 dimensional reductions calculated: pca, umap.unintegrated, harmony, umap.harmony
FeaturePlot(paed_sub,features=c("CCR7","LAMP3"), reduction = 'umap.harmony', ncol = 1, label = FALSE)

Other Clusters (excluding subclusters)

sub_clusters <- c(2,4,6,8,11,13, 3,5,9)

idx <- which(merged_obj$cluster %in% sub_clusters)
paed_other <- merged_obj[,-idx]
paed_other
An object of class Seurat 
17456 features across 57002 samples within 1 assay 
Active assay: RNA (17456 features, 2000 variable features)
 3 layers present: data, counts, scale.data
 4 dimensional reductions calculated: pca, umap.unintegrated, harmony, umap.harmony
levels(paed_other$cell_labels)[levels(paed_other$cell_labels) == "activated DC3 (aDC3)?"] <- "activated DC3 (aDC3)"
levels(Idents(paed_other))[levels(Idents(paed_other)) == "activated DC3 (aDC3)?"] <- "activated DC3 (aDC3)"
paed_other$cell_labels_v2 <- Idents(paed_other)
# Visualize the clustering results
DimPlot(paed_other, reduction = "umap.harmony", group.by = "cluster", label = TRUE, label.size = 2.5, repel = TRUE, raster = FALSE )

DimPlot(paed_other, reduction = "umap.harmony", label = TRUE, label.size = 2.5, repel = TRUE, raster = FALSE )

Save subclustered SEU object ( All other cells)

out2 <- here("output",
            "RDS", "AllBatches_Subclustering_SEUs", tissue,
             paste0("G000231_Neeland_",tissue,".all_other.subclusters.SEU.rds"))
#dir.create(out2)
if (!file.exists(out2)) {
  saveRDS(paed_other, file = out2)
}

Merge seurat objects of subclusters

files <- list.files(here("output",
            "RDS", "AllBatches_Subclustering_SEUs", tissue),
                    full.names = TRUE)

seuLst <- lapply(files, function(f) readRDS(f))

seu <- merge(seuLst[[1]], 
             y = c(seuLst[[2]], 
                   seuLst[[3]]))
seu
An object of class Seurat 
17456 features across 124685 samples within 1 assay 
Active assay: RNA (17456 features, 2000 variable features)
 9 layers present: data.1, data.2, data.3, counts.1, scale.data.1, counts.2, scale.data.2, counts.3, scale.data.3
merged <- seu %>%
NormalizeData() %>%
FindVariableFeatures() %>%
ScaleData() %>%
RunPCA()
Normalizing layer: counts.1
Normalizing layer: counts.2
Normalizing layer: counts.3
Finding variable features for layer counts.1
Finding variable features for layer counts.2
Finding variable features for layer counts.3
Centering and scaling data matrix
PC_ 1 
Positive:  MKI67, KIFC1, TYMS, AURKB, NUSAP1, CDK1, TOP2A, TK1, NCAPG, RRM2 
       HIST1H1B, TPX2, STMN1, BIRC5, HJURP, FOXM1, CCNB2, ZWINT, MYBL2, KIF11 
       HMGB2, KIF2C, ASF1B, CCNA2, CDCA8, UHRF1, SPC25, KIF23, CDC20, MND1 
Negative:  TRBC2, CD3E, FYB1, TCF7, CD3D, CD2, IL32, KLF2, PLAC8, IL7R 
       LCP2, CD69, TRBC1, CD96, CD3G, CD7, TRAC, CCR7, DUSP1, JUNB 
       CD4, SATB1, LY6E, GPR183, BCL11B, SRGN, JUN, ITM2A, DDIT4, ARL4C 
PC_ 2 
Positive:  CD3D, CD3E, TRAC, CD2, FYB1, TCF7, IL32, CD3G, TRBC1, LCP2 
       CD4, SRGN, CD7, MAF, IL2RB, ITM2A, TRBC2, BCL11B, SPN, IL7R 
       ICOS, TIGIT, SH2D1A, CD40LG, IL6R, TRAT1, HNRNPLL, TOX2, ST8SIA1, ZNRF1 
Negative:  IGHM, IGHD, CD83, IGKC, IFI30, CR1, CR2, MPEG1, ADAM19, POU2AF1 
       CCR6, FCRL3, FAM30A, TRAF4, ENTPD1, MAP3K8, CBFA2T3, CXXC5, TNFRSF13B, AIM2 
       BIRC3, PLEK, HERPUD1, PMAIP1, ZEB2, PLD4, ZC3H12D, TBC1D9, IGLC1, BACH2 
PC_ 3 
Positive:  TRBC2, TRAC, LTB, TCF7, CD3D, IKZF3, CD40LG, CD3E, CXCR5, ITM2A 
       TRBC1, CD3G, BCL11B, CD2, ST8SIA1, TRIB2, CCR7, ICOS, CHI3L2, LEF1 
       TOX2, IL32, SATB1, OBSCN, TRAT1, PDCD1, TIGIT, MAF, HIST1H1D, HIST1H1C 
Negative:  LYZ, CST3, FCER1G, TYROBP, CSF2RA, MS4A6A, TMEM176B, CD68, HCK, ITGAX 
       TNFAIP2, SERPINA1, CSF1R, ENPP2, GSN, LGALS2, SERPINF1, FGL2, SULF2, CD14 
       LGALS1, RASSF4, SLC8A1, TGFBI, CEBPD, CSTA, IL18, GLUL, MAFB, TMEM176A 
PC_ 4 
Positive:  MEF2B, RGS13, BCL6, LHFPL2, EML6, CD38, MME, CAMK1, PTPRS, MYBL1 
       SIAH2, JCHAIN, POU2AF1, DTX1, ACTG1, PDCD1, ST14, BCL2L11, ADA, MAF 
       PFKFB3, TOX2, CPM, PKM, IGHG1, ALOX5AP, BCAT1, SOX5, FGFR1, PFN1 
Negative:  KLF2, PLAC8, S1PR1, CCR6, MPEG1, VIM, HJURP, KIF23, CDC20, DLGAP5 
       KIFC1, GTSE1, CDCA8, AURKB, TOP2A, KIF20A, PLK1, JUN, CENPA, KIF2C 
       HMMR, NEK2, CCNB2, KIF18B, ASPM, CKAP2L, LY6E, TROAP, ESPL1, KIF14 
PC_ 5 
Positive:  TOX2, CD4, PDCD1, PLK1, HMMR, MAF, KIF20A, CDC20, CENPE, CENPA 
       CENPF, ASPM, TBC1D4, KIF14, TROAP, PSRC1, NEK2, CCNB2, ZNF703, PIF1 
       ST8SIA1, AURKA, CLEC7A, DLGAP5, GNG4, DEPDC1, CTSB, CXCL13, KIF23, IL6R 
Negative:  NKG7, CCL5, KLRK1, GZMA, GZMK, CST7, CTSW, EOMES, KLRD1, PRF1 
       CD8A, SAMD3, KLRC4, MCM4, GNLY, MATK, CCL4, KLRG1, CRTAM, KLRC3 
       FCRL6, UHRF1, TRDC, DTL, GINS2, TRGC2, PTGDR, CXCR6, CDC45, SLAMF7 
merged <- RunUMAP(merged, dims = 1:30, reduction = "pca", reduction.name = "umap.merged")
16:04:58 UMAP embedding parameters a = 0.9922 b = 1.112
Found more than one class "dist" in cache; using the first, from namespace 'spam'
Also defined by 'BiocGenerics'
16:04:58 Read 124685 rows and found 30 numeric columns
16:04:58 Using Annoy for neighbor search, n_neighbors = 30
Found more than one class "dist" in cache; using the first, from namespace 'spam'
Also defined by 'BiocGenerics'
16:04:58 Building Annoy index with metric = cosine, n_trees = 50
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
16:05:05 Writing NN index file to temp file /var/folders/q8/kw1r78g12qn793xm7g0zvk94x2bh70/T//RtmpA98UwT/file324a436e51e7
16:05:05 Searching Annoy index using 1 thread, search_k = 3000
16:05:30 Annoy recall = 100%
16:05:30 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
16:05:32 Initializing from normalized Laplacian + noise (using RSpectra)
16:05:40 Commencing optimization for 200 epochs, with 5587340 positive edges
16:06:18 Optimization finished
p4 <- DimPlot(merged, reduction = "umap.merged", group.by = "cell_labels_v2",raster = FALSE, repel = TRUE, label = TRUE, label.size = 4.5) + ggtitle(paste0(tissue, ": UMAP with annotations")) + NoLegend()
p4
Warning: ggrepel: 1 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Save Final SEU object ( All cells)

out3 <- here("output",
            "RDS", "AllBatches_Final_Clusters_SEUs",
             paste0("G000231_Neeland_",tissue,".final_clusters.SEU.rds"))

if (!file.exists(out3)) {
  saveRDS(merged, file = out3)
}

Session Info

sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.3.2 (2023-10-31)
 os       macOS Sonoma 14.6.1
 system   aarch64, darwin20
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       Australia/Melbourne
 date     2024-09-23
 pandoc   3.1.1 @ /Users/dixitgunjan/Desktop/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 package              * version    date (UTC) lib source
 abind                  1.4-5      2016-07-21 [1] CRAN (R 4.3.0)
 AnnotationDbi        * 1.64.1     2023-11-02 [1] Bioconductor
 backports              1.4.1      2021-12-13 [1] CRAN (R 4.3.0)
 beeswarm               0.4.0      2021-06-01 [1] CRAN (R 4.3.0)
 Biobase              * 2.62.0     2023-10-26 [1] Bioconductor
 BiocGenerics         * 0.48.1     2023-11-02 [1] Bioconductor
 BiocManager            1.30.22    2023-08-08 [1] CRAN (R 4.3.0)
 BiocStyle            * 2.30.0     2023-10-26 [1] Bioconductor
 Biostrings             2.70.2     2024-01-30 [1] Bioconductor 3.18 (R 4.3.2)
 bit                    4.0.5      2022-11-15 [1] CRAN (R 4.3.0)
 bit64                  4.0.5      2020-08-30 [1] CRAN (R 4.3.0)
 bitops                 1.0-7      2021-04-24 [1] CRAN (R 4.3.0)
 blob                   1.2.4      2023-03-17 [1] CRAN (R 4.3.0)
 bslib                  0.6.1      2023-11-28 [1] CRAN (R 4.3.1)
 cachem                 1.0.8      2023-05-01 [1] CRAN (R 4.3.0)
 callr                  3.7.5      2024-02-19 [1] CRAN (R 4.3.1)
 cellranger             1.1.0      2016-07-27 [1] CRAN (R 4.3.0)
 checkmate              2.3.1      2023-12-04 [1] CRAN (R 4.3.1)
 cli                    3.6.2      2023-12-11 [1] CRAN (R 4.3.1)
 cluster                2.1.6      2023-12-01 [1] CRAN (R 4.3.1)
 clustree             * 0.5.1      2023-11-05 [1] CRAN (R 4.3.1)
 codetools              0.2-19     2023-02-01 [1] CRAN (R 4.3.2)
 colorspace             2.1-0      2023-01-23 [1] CRAN (R 4.3.0)
 cowplot                1.1.3      2024-01-22 [1] CRAN (R 4.3.1)
 crayon                 1.5.2      2022-09-29 [1] CRAN (R 4.3.0)
 data.table           * 1.15.0     2024-01-30 [1] CRAN (R 4.3.1)
 DBI                    1.2.2      2024-02-16 [1] CRAN (R 4.3.1)
 DelayedArray           0.28.0     2023-11-06 [1] Bioconductor
 deldir                 2.0-2      2023-11-23 [1] CRAN (R 4.3.1)
 digest                 0.6.34     2024-01-11 [1] CRAN (R 4.3.1)
 dotCall64              1.1-1      2023-11-28 [1] CRAN (R 4.3.1)
 dplyr                * 1.1.4      2023-11-17 [1] CRAN (R 4.3.1)
 edgeR                * 4.0.16     2024-02-20 [1] Bioconductor 3.18 (R 4.3.2)
 ellipsis               0.3.2      2021-04-29 [1] CRAN (R 4.3.0)
 evaluate               0.23       2023-11-01 [1] CRAN (R 4.3.1)
 fansi                  1.0.6      2023-12-08 [1] CRAN (R 4.3.1)
 farver                 2.1.1      2022-07-06 [1] CRAN (R 4.3.0)
 fastDummies            1.7.3      2023-07-06 [1] CRAN (R 4.3.0)
 fastmap                1.1.1      2023-02-24 [1] CRAN (R 4.3.0)
 fitdistrplus           1.1-11     2023-04-25 [1] CRAN (R 4.3.0)
 forcats              * 1.0.0      2023-01-29 [1] CRAN (R 4.3.0)
 fs                     1.6.3      2023-07-20 [1] CRAN (R 4.3.0)
 future                 1.33.1     2023-12-22 [1] CRAN (R 4.3.1)
 future.apply           1.11.1     2023-12-21 [1] CRAN (R 4.3.1)
 generics               0.1.3      2022-07-05 [1] CRAN (R 4.3.0)
 GenomeInfoDb           1.38.6     2024-02-10 [1] Bioconductor 3.18 (R 4.3.2)
 GenomeInfoDbData       1.2.11     2024-02-27 [1] Bioconductor
 GenomicRanges          1.54.1     2023-10-30 [1] Bioconductor
 getPass                0.2-4      2023-12-10 [1] CRAN (R 4.3.1)
 ggbeeswarm             0.7.2      2023-04-29 [1] CRAN (R 4.3.0)
 ggforce                0.4.2      2024-02-19 [1] CRAN (R 4.3.1)
 ggplot2              * 3.5.0      2024-02-23 [1] CRAN (R 4.3.1)
 ggraph               * 2.1.0      2022-10-09 [1] CRAN (R 4.3.0)
 ggrastr                1.0.2      2023-06-01 [1] CRAN (R 4.3.0)
 ggrepel                0.9.5      2024-01-10 [1] CRAN (R 4.3.1)
 ggridges               0.5.6      2024-01-23 [1] CRAN (R 4.3.1)
 git2r                  0.33.0     2023-11-26 [1] CRAN (R 4.3.1)
 globals                0.16.2     2022-11-21 [1] CRAN (R 4.3.0)
 glue                 * 1.7.0      2024-01-09 [1] CRAN (R 4.3.1)
 goftest                1.2-3      2021-10-07 [1] CRAN (R 4.3.0)
 graphlayouts           1.1.0      2024-01-19 [1] CRAN (R 4.3.1)
 gridExtra              2.3        2017-09-09 [1] CRAN (R 4.3.0)
 gtable                 0.3.4      2023-08-21 [1] CRAN (R 4.3.0)
 here                 * 1.0.1      2020-12-13 [1] CRAN (R 4.3.0)
 highr                  0.10       2022-12-22 [1] CRAN (R 4.3.0)
 hms                    1.1.3      2023-03-21 [1] CRAN (R 4.3.0)
 htmltools              0.5.7      2023-11-03 [1] CRAN (R 4.3.1)
 htmlwidgets            1.6.4      2023-12-06 [1] CRAN (R 4.3.1)
 httpuv                 1.6.14     2024-01-26 [1] CRAN (R 4.3.1)
 httr                   1.4.7      2023-08-15 [1] CRAN (R 4.3.0)
 ica                    1.0-3      2022-07-08 [1] CRAN (R 4.3.0)
 igraph                 2.0.2      2024-02-17 [1] CRAN (R 4.3.1)
 IRanges              * 2.36.0     2023-10-26 [1] Bioconductor
 irlba                  2.3.5.1    2022-10-03 [1] CRAN (R 4.3.2)
 jquerylib              0.1.4      2021-04-26 [1] CRAN (R 4.3.0)
 jsonlite               1.8.8      2023-12-04 [1] CRAN (R 4.3.1)
 kableExtra           * 1.4.0      2024-01-24 [1] CRAN (R 4.3.1)
 KEGGREST               1.42.0     2023-10-26 [1] Bioconductor
 KernSmooth             2.23-22    2023-07-10 [1] CRAN (R 4.3.2)
 knitr                  1.45       2023-10-30 [1] CRAN (R 4.3.1)
 labeling               0.4.3      2023-08-29 [1] CRAN (R 4.3.0)
 later                  1.3.2      2023-12-06 [1] CRAN (R 4.3.1)
 lattice                0.22-5     2023-10-24 [1] CRAN (R 4.3.1)
 lazyeval               0.2.2      2019-03-15 [1] CRAN (R 4.3.0)
 leiden                 0.4.3.1    2023-11-17 [1] CRAN (R 4.3.1)
 lifecycle              1.0.4      2023-11-07 [1] CRAN (R 4.3.1)
 limma                * 3.58.1     2023-11-02 [1] Bioconductor
 listenv                0.9.1      2024-01-29 [1] CRAN (R 4.3.1)
 lmtest                 0.9-40     2022-03-21 [1] CRAN (R 4.3.0)
 locfit                 1.5-9.8    2023-06-11 [1] CRAN (R 4.3.0)
 lubridate            * 1.9.3      2023-09-27 [1] CRAN (R 4.3.1)
 magrittr               2.0.3      2022-03-30 [1] CRAN (R 4.3.0)
 MASS                   7.3-60.0.1 2024-01-13 [1] CRAN (R 4.3.1)
 Matrix                 1.6-5      2024-01-11 [1] CRAN (R 4.3.1)
 MatrixGenerics         1.14.0     2023-10-26 [1] Bioconductor
 matrixStats            1.2.0      2023-12-11 [1] CRAN (R 4.3.1)
 memoise                2.0.1      2021-11-26 [1] CRAN (R 4.3.0)
 mime                   0.12       2021-09-28 [1] CRAN (R 4.3.0)
 miniUI                 0.1.1.1    2018-05-18 [1] CRAN (R 4.3.0)
 munsell                0.5.0      2018-06-12 [1] CRAN (R 4.3.0)
 nlme                   3.1-164    2023-11-27 [1] CRAN (R 4.3.1)
 org.Hs.eg.db         * 3.18.0     2024-02-27 [1] Bioconductor
 paletteer              1.6.0      2024-01-21 [1] CRAN (R 4.3.1)
 parallelly             1.37.0     2024-02-14 [1] CRAN (R 4.3.1)
 patchwork            * 1.2.0      2024-01-08 [1] CRAN (R 4.3.1)
 pbapply                1.7-2      2023-06-27 [1] CRAN (R 4.3.0)
 pillar                 1.9.0      2023-03-22 [1] CRAN (R 4.3.0)
 pkgconfig              2.0.3      2019-09-22 [1] CRAN (R 4.3.0)
 plotly                 4.10.4     2024-01-13 [1] CRAN (R 4.3.1)
 plyr                   1.8.9      2023-10-02 [1] CRAN (R 4.3.1)
 png                    0.1-8      2022-11-29 [1] CRAN (R 4.3.0)
 polyclip               1.10-6     2023-09-27 [1] CRAN (R 4.3.1)
 presto                 1.0.0      2024-02-27 [1] Github (immunogenomics/presto@31dc97f)
 prismatic              1.1.1      2022-08-15 [1] CRAN (R 4.3.0)
 processx               3.8.3      2023-12-10 [1] CRAN (R 4.3.1)
 progressr              0.14.0     2023-08-10 [1] CRAN (R 4.3.0)
 promises               1.2.1      2023-08-10 [1] CRAN (R 4.3.0)
 ps                     1.7.6      2024-01-18 [1] CRAN (R 4.3.1)
 purrr                * 1.0.2      2023-08-10 [1] CRAN (R 4.3.0)
 R6                     2.5.1      2021-08-19 [1] CRAN (R 4.3.0)
 RANN                   2.6.1      2019-01-08 [1] CRAN (R 4.3.0)
 RColorBrewer         * 1.1-3      2022-04-03 [1] CRAN (R 4.3.0)
 Rcpp                   1.0.12     2024-01-09 [1] CRAN (R 4.3.1)
 RcppAnnoy              0.0.22     2024-01-23 [1] CRAN (R 4.3.1)
 RcppHNSW               0.6.0      2024-02-04 [1] CRAN (R 4.3.1)
 RCurl                  1.98-1.14  2024-01-09 [1] CRAN (R 4.3.1)
 readr                * 2.1.5      2024-01-10 [1] CRAN (R 4.3.1)
 readxl               * 1.4.3      2023-07-06 [1] CRAN (R 4.3.0)
 rematch2               2.1.2      2020-05-01 [1] CRAN (R 4.3.0)
 reshape2               1.4.4      2020-04-09 [1] CRAN (R 4.3.0)
 reticulate             1.35.0     2024-01-31 [1] CRAN (R 4.3.1)
 rlang                  1.1.3      2024-01-10 [1] CRAN (R 4.3.1)
 rmarkdown              2.25       2023-09-18 [1] CRAN (R 4.3.1)
 ROCR                   1.0-11     2020-05-02 [1] CRAN (R 4.3.0)
 rprojroot              2.0.4      2023-11-05 [1] CRAN (R 4.3.1)
 RSpectra               0.16-1     2022-04-24 [1] CRAN (R 4.3.0)
 RSQLite                2.3.5      2024-01-21 [1] CRAN (R 4.3.1)
 rstudioapi             0.15.0     2023-07-07 [1] CRAN (R 4.3.0)
 Rtsne                  0.17       2023-12-07 [1] CRAN (R 4.3.1)
 S4Arrays               1.2.0      2023-10-26 [1] Bioconductor
 S4Vectors            * 0.40.2     2023-11-25 [1] Bioconductor 3.18 (R 4.3.2)
 sass                   0.4.8      2023-12-06 [1] CRAN (R 4.3.1)
 scales                 1.3.0      2023-11-28 [1] CRAN (R 4.3.1)
 scattermore            1.2        2023-06-12 [1] CRAN (R 4.3.0)
 sctransform            0.4.1      2023-10-19 [1] CRAN (R 4.3.1)
 sessioninfo            1.2.2      2021-12-06 [1] CRAN (R 4.3.0)
 Seurat               * 5.0.1.9009 2024-02-28 [1] Github (satijalab/seurat@6a3ef5e)
 SeuratObject         * 5.0.1      2023-11-17 [1] CRAN (R 4.3.1)
 shiny                  1.8.0      2023-11-17 [1] CRAN (R 4.3.1)
 SingleCellExperiment   1.24.0     2023-11-06 [1] Bioconductor
 sp                   * 2.1-3      2024-01-30 [1] CRAN (R 4.3.1)
 spam                   2.10-0     2023-10-23 [1] CRAN (R 4.3.1)
 SparseArray            1.2.4      2024-02-10 [1] Bioconductor 3.18 (R 4.3.2)
 spatstat.data          3.0-4      2024-01-15 [1] CRAN (R 4.3.1)
 spatstat.explore       3.2-6      2024-02-01 [1] CRAN (R 4.3.1)
 spatstat.geom          3.2-8      2024-01-26 [1] CRAN (R 4.3.1)
 spatstat.random        3.2-2      2023-11-29 [1] CRAN (R 4.3.1)
 spatstat.sparse        3.0-3      2023-10-24 [1] CRAN (R 4.3.1)
 spatstat.utils         3.0-4      2023-10-24 [1] CRAN (R 4.3.1)
 speckle              * 1.2.0      2023-10-26 [1] Bioconductor
 statmod                1.5.0      2023-01-06 [1] CRAN (R 4.3.0)
 stringi                1.8.3      2023-12-11 [1] CRAN (R 4.3.1)
 stringr              * 1.5.1      2023-11-14 [1] CRAN (R 4.3.1)
 SummarizedExperiment   1.32.0     2023-11-06 [1] Bioconductor
 survival               3.5-8      2024-02-14 [1] CRAN (R 4.3.1)
 svglite                2.1.3      2023-12-08 [1] CRAN (R 4.3.1)
 systemfonts            1.0.5      2023-10-09 [1] CRAN (R 4.3.1)
 tensor                 1.5        2012-05-05 [1] CRAN (R 4.3.0)
 tibble               * 3.2.1      2023-03-20 [1] CRAN (R 4.3.0)
 tidygraph              1.3.1      2024-01-30 [1] CRAN (R 4.3.1)
 tidyr                * 1.3.1      2024-01-24 [1] CRAN (R 4.3.1)
 tidyselect             1.2.0      2022-10-10 [1] CRAN (R 4.3.0)
 tidyverse            * 2.0.0      2023-02-22 [1] CRAN (R 4.3.0)
 timechange             0.3.0      2024-01-18 [1] CRAN (R 4.3.1)
 tweenr                 2.0.3      2024-02-26 [1] CRAN (R 4.3.1)
 tzdb                   0.4.0      2023-05-12 [1] CRAN (R 4.3.0)
 utf8                   1.2.4      2023-10-22 [1] CRAN (R 4.3.1)
 uwot                   0.1.16     2023-06-29 [1] CRAN (R 4.3.0)
 vctrs                  0.6.5      2023-12-01 [1] CRAN (R 4.3.1)
 vipor                  0.4.7      2023-12-18 [1] CRAN (R 4.3.1)
 viridis                0.6.5      2024-01-29 [1] CRAN (R 4.3.1)
 viridisLite            0.4.2      2023-05-02 [1] CRAN (R 4.3.0)
 whisker                0.4.1      2022-12-05 [1] CRAN (R 4.3.0)
 withr                  3.0.0      2024-01-16 [1] CRAN (R 4.3.1)
 workflowr            * 1.7.1      2023-08-23 [1] CRAN (R 4.3.0)
 xfun                   0.42       2024-02-08 [1] CRAN (R 4.3.1)
 xml2                   1.3.6      2023-12-04 [1] CRAN (R 4.3.1)
 xtable                 1.8-4      2019-04-21 [1] CRAN (R 4.3.0)
 XVector                0.42.0     2023-10-26 [1] Bioconductor
 yaml                   2.3.8      2023-12-11 [1] CRAN (R 4.3.1)
 zlibbioc               1.48.0     2023-10-26 [1] Bioconductor
 zoo                    1.8-12     2023-04-13 [1] CRAN (R 4.3.0)

 [1] /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library

──────────────────────────────────────────────────────────────────────────────

sessionInfo()
R version 4.3.2 (2023-10-31)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.6.1

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Australia/Melbourne
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] readxl_1.4.3         org.Hs.eg.db_3.18.0  AnnotationDbi_1.64.1
 [4] IRanges_2.36.0       S4Vectors_0.40.2     Biobase_2.62.0      
 [7] BiocGenerics_0.48.1  speckle_1.2.0        edgeR_4.0.16        
[10] limma_3.58.1         patchwork_1.2.0      data.table_1.15.0   
[13] RColorBrewer_1.1-3   kableExtra_1.4.0     clustree_0.5.1      
[16] ggraph_2.1.0         Seurat_5.0.1.9009    SeuratObject_5.0.1  
[19] sp_2.1-3             glue_1.7.0           here_1.0.1          
[22] lubridate_1.9.3      forcats_1.0.0        stringr_1.5.1       
[25] dplyr_1.1.4          purrr_1.0.2          readr_2.1.5         
[28] tidyr_1.3.1          tibble_3.2.1         ggplot2_3.5.0       
[31] tidyverse_2.0.0      BiocStyle_2.30.0     workflowr_1.7.1     

loaded via a namespace (and not attached):
  [1] fs_1.6.3                    matrixStats_1.2.0          
  [3] spatstat.sparse_3.0-3       bitops_1.0-7               
  [5] httr_1.4.7                  tools_4.3.2                
  [7] sctransform_0.4.1           backports_1.4.1            
  [9] utf8_1.2.4                  R6_2.5.1                   
 [11] lazyeval_0.2.2              uwot_0.1.16                
 [13] withr_3.0.0                 gridExtra_2.3              
 [15] progressr_0.14.0            cli_3.6.2                  
 [17] spatstat.explore_3.2-6      fastDummies_1.7.3          
 [19] prismatic_1.1.1             labeling_0.4.3             
 [21] sass_0.4.8                  spatstat.data_3.0-4        
 [23] ggridges_0.5.6              pbapply_1.7-2              
 [25] systemfonts_1.0.5           svglite_2.1.3              
 [27] sessioninfo_1.2.2           parallelly_1.37.0          
 [29] rstudioapi_0.15.0           RSQLite_2.3.5              
 [31] generics_0.1.3              ica_1.0-3                  
 [33] spatstat.random_3.2-2       Matrix_1.6-5               
 [35] ggbeeswarm_0.7.2            fansi_1.0.6                
 [37] abind_1.4-5                 lifecycle_1.0.4            
 [39] whisker_0.4.1               yaml_2.3.8                 
 [41] SummarizedExperiment_1.32.0 SparseArray_1.2.4          
 [43] Rtsne_0.17                  paletteer_1.6.0            
 [45] grid_4.3.2                  blob_1.2.4                 
 [47] promises_1.2.1              crayon_1.5.2               
 [49] miniUI_0.1.1.1              lattice_0.22-5             
 [51] cowplot_1.1.3               KEGGREST_1.42.0            
 [53] pillar_1.9.0                knitr_1.45                 
 [55] GenomicRanges_1.54.1        future.apply_1.11.1        
 [57] codetools_0.2-19            leiden_0.4.3.1             
 [59] getPass_0.2-4               vctrs_0.6.5                
 [61] png_0.1-8                   spam_2.10-0                
 [63] cellranger_1.1.0            gtable_0.3.4               
 [65] rematch2_2.1.2              cachem_1.0.8               
 [67] xfun_0.42                   S4Arrays_1.2.0             
 [69] mime_0.12                   tidygraph_1.3.1            
 [71] survival_3.5-8              SingleCellExperiment_1.24.0
 [73] statmod_1.5.0               ellipsis_0.3.2             
 [75] fitdistrplus_1.1-11         ROCR_1.0-11                
 [77] nlme_3.1-164                bit64_4.0.5                
 [79] RcppAnnoy_0.0.22            GenomeInfoDb_1.38.6        
 [81] rprojroot_2.0.4             bslib_0.6.1                
 [83] irlba_2.3.5.1               vipor_0.4.7                
 [85] KernSmooth_2.23-22          colorspace_2.1-0           
 [87] DBI_1.2.2                   ggrastr_1.0.2              
 [89] tidyselect_1.2.0            processx_3.8.3             
 [91] bit_4.0.5                   compiler_4.3.2             
 [93] git2r_0.33.0                xml2_1.3.6                 
 [95] DelayedArray_0.28.0         plotly_4.10.4              
 [97] checkmate_2.3.1             scales_1.3.0               
 [99] lmtest_0.9-40               callr_3.7.5                
[101] digest_0.6.34               goftest_1.2-3              
[103] spatstat.utils_3.0-4        presto_1.0.0               
[105] rmarkdown_2.25              XVector_0.42.0             
[107] htmltools_0.5.7             pkgconfig_2.0.3            
[109] MatrixGenerics_1.14.0       highr_0.10                 
[111] fastmap_1.1.1               rlang_1.1.3                
[113] htmlwidgets_1.6.4           shiny_1.8.0                
[115] farver_2.1.1                jquerylib_0.1.4            
[117] zoo_1.8-12                  jsonlite_1.8.8             
[119] RCurl_1.98-1.14             magrittr_2.0.3             
[121] GenomeInfoDbData_1.2.11     dotCall64_1.1-1            
[123] munsell_0.5.0               Rcpp_1.0.12                
[125] viridis_0.6.5               reticulate_1.35.0          
[127] stringi_1.8.3               zlibbioc_1.48.0            
[129] MASS_7.3-60.0.1             plyr_1.8.9                 
[131] parallel_4.3.2              listenv_0.9.1              
[133] ggrepel_0.9.5               deldir_2.0-2               
[135] Biostrings_2.70.2           graphlayouts_1.1.0         
[137] splines_4.3.2               tensor_1.5                 
[139] hms_1.1.3                   locfit_1.5-9.8             
[141] ps_1.7.6                    igraph_2.0.2               
[143] spatstat.geom_3.2-8         RcppHNSW_0.6.0             
[145] reshape2_1.4.4              evaluate_0.23              
[147] BiocManager_1.30.22         tzdb_0.4.0                 
[149] tweenr_2.0.3                httpuv_1.6.14              
[151] RANN_2.6.1                  polyclip_1.10-6            
[153] future_1.33.1               scattermore_1.2            
[155] ggforce_0.4.2               xtable_1.8-4               
[157] RSpectra_0.16-1             later_1.3.2                
[159] viridisLite_0.4.2           beeswarm_0.4.0             
[161] memoise_2.0.1               cluster_2.1.6              
[163] timechange_0.3.0            globals_0.16.2